#version 450 #extension GL_EXT_shader_explicit_arithmetic_types_float16 : require #extension GL_EXT_control_flow_attributes : enable layout (push_constant) uniform parameter { uint KX; uint KY; float scale; float max_bias; float m0; float m1; uint n_head_log2; uint nrows_x; } p; #include "types.comp" layout(constant_id = 0) const uint BLOCK_SIZE = 32; layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) readonly buffer Y {B_TYPE data_b[];}; layout (binding = 2) buffer D {D_TYPE data_d[];}; shared FLOAT_TYPE vals[BLOCK_SIZE]; // num_iters is the number of BLOCK_SIZE loop iterations we need to iterate // over all the columns. The main function tries to pass a constant here, // as if it were a template function, to allow unrolling. void soft_max(uint num_iters) { const uint tid = gl_LocalInvocationID.x; const uint rowx = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x; const uint rowy = (p.KY > 0) ? (rowx % p.KY) : 0; if (rowx >= p.nrows_x) { return; } float slope = 1.0f; // ALiBi if (p.max_bias > 0.0f) { const uint h = rowx/p.KY; // head index const float base = h < p.n_head_log2 ? p.m0 : p.m1; const uint exp = h < p.n_head_log2 ? h + 1 : 2*(h - p.n_head_log2) + 1; slope = pow(base, exp); } // Find max FLOAT_TYPE max_val = uintBitsToFloat(0xFF800000); // Cache values while we compute the max, so we don't need to read them // again when we're ready to compute exp(x-max). const uint DATA_CACHE_SIZE = 16; FLOAT_TYPE data_cache[DATA_CACHE_SIZE]; [[unroll]] for (uint col0 = 0, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) { const uint col = col0 + tid; FLOAT_TYPE a = FLOAT_TYPE(0); if (col < p.KX) { a = data_a[rowx * p.KX + col]; } FLOAT_TYPE b = FLOAT_TYPE(0); if (p.KY > 0 && col < p.KX) { b = data_b[rowy * p.KX + col]; } FLOAT_TYPE v = a * p.scale + slope * b; if (col < p.KX) { max_val = max(max_val, v); } if (idx < DATA_CACHE_SIZE) { data_cache[idx] = v; } } // reduce across the workgroup vals[tid] = max_val; barrier(); [[unroll]] for (uint s = BLOCK_SIZE / 2; s > 0; s >>= 1) { if (tid < s) { vals[tid] = max(vals[tid], vals[tid + s]); } barrier(); } max_val = vals[0]; barrier(); FLOAT_TYPE sum = FLOAT_TYPE(0.0f); // Compute sum{exp(x - max)} [[unroll]] for (uint col0 = 0, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) { const uint col = col0 + tid; if (col >= p.KX) { break; } // compute exp(a*scale+b*slope), add it to sum, and cache the new value // in data_cache if possible. const uint i = rowx * p.KX + col; FLOAT_TYPE val; if (idx < DATA_CACHE_SIZE) { val = exp(data_cache[idx] - max_val); } else { val = exp(FLOAT_TYPE(data_a[i]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) - max_val); } sum += val; if (idx < DATA_CACHE_SIZE) { data_cache[idx] = val; } else { data_d[i] = D_TYPE(val); } } // reduce across the workgroup vals[tid] = sum; barrier(); [[unroll]] for (uint s = BLOCK_SIZE / 2; s > 0; s >>= 1) { if (tid < s) { vals[tid] += vals[tid + s]; } barrier(); } sum = vals[0]; FLOAT_TYPE rcpdivisor = 1.0/sum; [[unroll]] for (uint col0 = 0, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) { const uint col = col0 + tid; if (col >= p.KX) { continue; } if (idx < DATA_CACHE_SIZE) { data_d[rowx*p.KX + col] = D_TYPE(data_cache[idx] * rcpdivisor); } else { data_d[rowx*p.KX + col] *= D_TYPE(rcpdivisor); } } } void main() { // instantiate the soft_max function for several different // dimensions, to allow loop unrolling uint num_blocks = (p.KX + BLOCK_SIZE - 1) / BLOCK_SIZE; if (num_blocks > 32) { soft_max(num_blocks); } else if (num_blocks > 16) { soft_max(32); } else if (num_blocks > 8) { soft_max(16); } else if (num_blocks > 4) { soft_max(8); } else if (num_blocks == 4) { soft_max(4); } else if (num_blocks == 3) { soft_max(3); } else if (num_blocks == 2) { soft_max(2); } else if (num_blocks == 1) { soft_max(1); } }