Commit Graph

62 Commits

Author SHA1 Message Date
Diego Devesa
cf977670e6 ggml-backend : add device and backend reg interfaces (llama/9707)
Also:

- metal : fix compute pass descriptor autorelease crash
- ggml-backend : add device description to CPU backend
- ggml: unify backend logging mechanism
2024-10-05 15:23:51 +03:00
Diego Devesa
1acfadb721 ggml-backend : add device and backend reg interfaces (llama/9707)
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-10-05 15:23:51 +03:00
Johannes Gäßler
936cf3beb7 ggml/ex: calculate accuracy in graph, adapt MNIST (ggml/980) 2024-10-05 15:23:51 +03:00
Johannes Gäßler
bc92c2f8f0 ggml: refactor cross entropy loss CPU impl. (ggml/976) 2024-10-05 15:23:51 +03:00
Johannes Gäßler
5e9d6baa48 test: fix OPT_STEP_ADAMW for test-backend-ops (ggml/974) 2024-10-03 12:22:17 +03:00
Borislav Stanimirov
31fdf05fda ggml : fix ggml_cast (ggml/973) 2024-10-03 12:22:17 +03:00
Johannes Gäßler
0ac6666cd2 ggml: fix gradient allocation logic (ggml/966)
* ggml: fix gradient allocation logic

* gradient allocation in ggml_build_backward_expand

* fixup

* fix test-backend-ops grad

* suggestions by slaren

* fix test1.c

* fix legacy opt API

* fix test-grad0

* remove keep arg
2024-10-03 12:22:17 +03:00
Georgi Gerganov
6c91da80b8 ggml : define missing HWCAP flags (llama/9684)
ggml-ci

Co-authored-by: Willy Tarreau <w@1wt.eu>
2024-10-03 12:22:17 +03:00
Dan Johansson
c245168ba3 ggml : add run-time detection of neon, i8mm and sve (llama/9331)
* ggml: Added run-time detection of neon, i8mm and sve

Adds run-time detection of the Arm instructions set features
neon, i8mm and sve for Linux and Apple build targets.

* ggml: Extend feature detection to include non aarch64 Arm arch

* ggml: Move definition of ggml_arm_arch_features to the global data section
2024-10-03 12:22:17 +03:00
Max Krasnyansky
02285dff81 threads: fix msvc build without openmp (llama/9615)
We're missing atomic_thread_fence() in MSVC builds when openmp is disabled.
2024-09-24 19:45:08 +03:00
Max Krasnyansky
08e8414f27 threads: improve ggml_barrier scaling with large number of threads (llama/9598)
Make sure n_barrier and n_barrier_passed do not share the cache line to avoid cache line bouncing.
This optimization shows performance improvements even for n_threads <= 8 cases.

Resurect TSAN (Thread Sanitizer) check so that we can avoid doing expensive read-modify-write
in the normal case and just use thread-fence as originally intended.
2024-09-24 19:45:08 +03:00
Georgi Gerganov
54e5095765 examples : adapt to ggml.h changes (ggml/0)
ggml-ci
2024-09-24 19:45:08 +03:00
Georgi Gerganov
34291099fb ggml : refactoring (llama/#0)
- d6a04f87
- 23e0d70b
2024-09-24 19:45:08 +03:00
slaren
138e20b697 ggml : fix n_threads_cur initialization with one thread (llama/9538)
* ggml : fix n_threads_cur initialization with one thread

* Update ggml/src/ggml.c

---------

Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
2024-09-24 19:45:08 +03:00
Max Krasnyansky
a8d9abfa22 threadpool : skip polling for unused threads (llama/9461)
* threadpool: skip polling for unused threads

Currently all threads do N polling rounds even if only 1 thread is active (n_threads_cur == 1).
This commit adds a check to skip the polling for unused threads (ith >= n_threads_cur).

n_threads_cur is now an atomic_int to explicitly tell thread sanitizer that it is written
from one thread and read from other threads (not a race conditions).

* threadpool: further simplify and improve ggml_barrier

Avoid using strict memory order while polling, yet make sure that all threads go through
full memory barrier (memory fence) on ggml_barrier entrace and exit.

* threads: add simple barrier test

This test does lots of small, parallel matmul ops where the barriers in between dominate the overhead.

* threadpool: improve thread sync for new-graphs

Using the same tricks as ggml_barrier. All the polling is done with relaxed memory order
to keep it efficient, once the new graph is detected we do full fence using read-modify-write
with strict memory order.

* threadpool: improve abort handling

Do not use threadpool->ec (exit code) to decide whether to exit the compute loop.
threadpool->ec is not atomic which makes thread-sanitizer rightfully unhappy about it.

Instead introduce atomic threadpool->abort flag used for this. This is consistent with
how we handle threadpool->stop or pause.

While at it add an explicit atomic_load for n_threads_cur for consistency.

* test-barrier: release threadpool before releasing the context

fixes use-after-free detected by gcc thread-sanitizer on x86-64
for some reason llvm sanitizer is not detecting this issue.
2024-09-24 19:45:08 +03:00
Yuri Khrustalev
4f4687cb74 ggml : ggml_type_name return "NONE" for invalid values (llama/9458)
When running on Windows, the quantization utility attempts to print the types that are not set which leads to a crash.
2024-09-24 19:45:08 +03:00
Ahmad Tameem
3f8f8a78a2 riscv : modify Makefile and add a RISCV_VECT to print log info (llama/9442)
- Added ggml_cpu_has_riscv_v() in GGML to print system info in log
- Modified Makefile to only use flag when cross compiling for RISC-V
2024-09-24 19:45:08 +03:00
Radoslav Gerganov
0677293503 rpc : fix segfault with nkvo (llama/9389)
* rpc : fix nkvo

* rpc : buf_size must not be static

ref: #9337

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-09-24 19:45:08 +03:00
Johannes Gäßler
c7515b0995 ggml/examples: add backend support for numerical optimization (ggml/949)
* CUDA eval works

* stochastic gradient descent op

* Adam except decay

* CUDA CROSS_ENTROPY_LOSS_BACK

* CUDA mnist-fc training works

* backend CLI arg

* refactor gguf load

* remove sched from opt_step_adam

* implement l1 regularization (weight decay)

* extra call to add optimizer

* initialize gradients with ggml_graph_reset

* gradient accumulation

* increment iter per eval instead of epoch

* adjust backend interfaces

* fix ggml_graph_reset without backend

* fix ggml graph export/import

* fixup

* rename

* revert ggml_opt changes

* more general CUDA repeat_back

* update documentation, fix CNN

* validation split

* add clarifying comment

* optimize PyTorch training

* adjust buffer size, thread count

* fix 0.0f validation split

* Update examples/mnist/mnist-common.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix gradient accumulation

* tensor flag for accumulators -> tensor hash set

* Update include/ggml.h

Co-authored-by: slaren <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* fix test prints

* Update src/ggml-backend.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* better CUDA support for noncontiguous out_prod

* add comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-09-24 19:45:08 +03:00
Georgi Gerganov
253ce30004 examples : add null threadpool args where needed (ggml/0)
ggml-ci
2024-09-24 19:45:08 +03:00
slaren
d37fd275fd ggml : always check bounds on get_rows operations (llama/9354) 2024-09-24 19:45:08 +03:00
Xuan Son Nguyen
195877fd72 ggml : fix missing cpu_set_t on emscripten (llama/9336)
* ggml : fix missing cpu_set_t on emscripten

* better version

* bring back android part
2024-09-24 19:45:08 +03:00
compilade
6f5514b6e2 ggml-quants : ternary packing for TriLMs and BitNet b1.58 (llama/8151)
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b

* ggml-quants : faster 1.625 bpw AVX2 vec_dot

Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line

* ggml-quants : subtract 1 when back in epi8

This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.

* ggml-quants : Q2_2 now faster than Q4_K on with AVX2

* ggml-quants : cleanup Q1_3 code formatting

* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3

* ggml-quants : use ceiling division when quantizing q1_3

* convert-hf : simplify BitNet pre-quantization

This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.

* convert-hf : allow converting the weird BitNet 1.3B

Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.

* bitnet : replace 1.58b with b1.58, as in the paper

* ggml-quants : fix build failure on Windows

* ggml-quants : attempt to fix Arm 32-bit support

* ggml : add some informative comments in q1_3 vec_dot

* ggml : add TQ1_0 and TQ2_0 ternary quantization types

* ggml : even faster TQ2_0

* ggml : also faster TQ1_0

Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.

* ggml : fix build issues in certain environments

* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0

* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat

The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.

* ggml : remove q1_3 and q2_2

No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.

* llama : remove the separate scale tensors of BitNet b1.58

They won't be needed, since the remaining ternary quant types have
built-in scales.

* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency

* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot

Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.

* ggml-quants : remove comment about possible format change of TQ2_0

Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.

* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0

* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0

This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.

* convert : allow direct conversion to TQ1_0 and TQ2_0

The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.

* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0

Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.

* ggml-quants : allow using ARM dot product instructions for TQ1_0

* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support

* ggml : remove unused ggml_mul special case

It would otherwise conflict with the more general
optimization coming with Mamba-2.

* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators

* test-backend-ops : add TQ1_0 and TQ2_0 comments for later

Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
2024-09-24 19:45:08 +03:00
yuri@FreeBSD
3764bc974c ggml : add pthread includes on FreeBSD (llama/9258) 2024-09-24 19:45:08 +03:00
Molly Sophia
fcffc912a9 llama : support RWKV v6 models (llama/8980)
* convert_hf_to_gguf: Add support for RWKV v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add RWKV tokenization

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Do not use special tokens when matching in RWKV tokenizer

* Fix model loading

* Add (broken) placeholder graph builder for RWKV

* Add workaround for kv cache

* Add logits conversion to rwkv5

* Add rwkv5 layer norms

* Add time mix KVRG & correct merge mistake

* Add remaining time mix parameters

* Add time mix output loading

* Add placeholder llm_build_time_mix

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Load more tensors for rwkv v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix rwkv tokenizer

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add unary operator Exp

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV v6 graph building

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``rescale_every_n_layers`` parameter

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``wkv.head_size`` key for RWKV

so it doesn't reuse Mamba ssm parameters

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix offloading layers to CUDA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix parallel inferencing for RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Remove trailing whitespaces

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv: Avoid using inplace operations

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv: Avoid using ``eval``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv tokenizer: Don't escape sequences manually

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* ggml: Add backward computation for unary op ``exp``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Use MODEL_ARCH.RWKV6 instead of MODEL_ARCH.RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv6: Simplify graph

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Detect model.type

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix tensor loading for 7B/14B models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix group_norm assertion failure with Metal

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Clean up

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add quantization tensor exclusion

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Use the new advanced batch splits

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Use ``ggml_norm`` instead of ``ggml_group_norm``

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Apply code style and misc changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Use class name ``Rwkv6Model``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Make use of key ``feed_forward_length``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add kv ``time_mix_extra_dim`` and ``time_decay_extra_dim``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Match ``new_name`` instead of ``name`` for float32 explicit tensors

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Keep ``time_mix_w1/w2`` as F32

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Remove unused nodes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Apply code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add lora for some supported tensors

Currently att.key/receptance/value/gate/output, ffn.receptance/key/value, as well as head.weight

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* rwkv : speed-up tokenization using trie

* minor : style + indentation

* llama: rwkv6: Avoid division by zero

Co-authored-by: compilade <git@compilade.net>

* ggml: rwkv_wkv: Avoid copying the state

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Layl Bongers <3094382+LaylBongers@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-24 19:45:08 +03:00
Faisal Zaghloul
38d40b9972 Threadpool: take 2 (llama/8672)
* Introduce ggml_compute_threadpool

- OpenMP functional: check
- Vanilla ggml functional: Check
- ggml w/threadpool functional: Check
- OpenMP no regression: No glaring problems
- Vanilla ggml no regression: No glaring problems
- ggml w/threadpool no regression: No glaring problems

* Minor fixes

* fixed use after release bug

* fixed a harmless race condition

* Fix Android bulid issue

* fix more race conditions

* fix deadlock for cases where cgraph.n_nodes == 1

and fix --poll case

* threadpool: use cpu_get_num_math to set the default number of threadpool threads

This way we avoid using E-Cores and Hyperthreaded siblings.

* bench: create fresh threadpool for each test

For benchmarking it's better to start a fresh pool for each test with the exact number of threads
needed for that test. Having larger pools is suboptimal (causes more load, etc).

* atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier

This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior.

* threadpool: make polling the default to match openmp behavior

All command line args now allow for setting poll to 0 (false).

* threadpool: do not wakeup threads in already paused threadpool

* fix potential race condition in check_for_work

* threadpool: do not create two threadpools if their params are identical

* threadpool: reduce pause/resume/wakeup overhead in common cases

We now start threadpool in paused state only if we have two.
The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead.

* threadpool: add support for hybrid polling

poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var.
poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ...

The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms.
We can tune this further as things evolve.

* threadpool: reduce the number of barrier required

New work is now indicated with an atomic counter that is incremented for
each new graph that needs to be computed.
This removes the need for extra barrier for clearing the "new_work" and
removes the special case for trivial graphs.

* threadpool: remove special-casing for disposable threadpools

With the efficient hybrid polling there is no need to make disposable pools any different.
This simplifies the overall logic and reduces branching.

Include n_threads in debug print for disposable threadpool.

Declare pause and stop flags as atomic_bool
This doesn't actually generate any memory barriers and simply informs
the thread sanitizer that these flags can be written & read by different
threads without locking.

* threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs)

This fixes the race condition with very small graphs where the main thread happens to
start a new graph while the workers are just about to exit from barriers.

* threadpool: use relaxed order for chunk sync

Full memory barrier is an overkill for this since each thread works on different chunk

* threadpool: remove abort_callback from threadpool state

* threadpool: better naming for thread/cpumask releated functions

* threadpool: consistent use of int type for n_threads params

* threadpool: add support for ggml_threadpool_params_default/init

Also removes the need for explicit mask_specified param.
all-zero cpumask means use default (usually inherited) cpu affinity mask.

* threadpool: move typedef into ggml.h

* threadpool: fix apply_priority() function name

* threadpool: fix swift wrapper errors due to n_threads int type cleanup

* threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled

* threadpool: replace checks for compute_thread ret code with proper status check

* threadpool: simplify threadpool init logic and fix main thread affinity application

Most of the init code is now exactly the same between threadpool and openmp.

* threadpool: update threadpool resume/pause function names

* threadpool: enable openmp by default for now

* threadpool: don't forget to free workers state when omp is enabled

* threadpool: avoid updating process priority on the platforms that do not require it

On Windows we need to change overall process priority class in order to set thread priorities,
but on Linux, Mac, etc we do not need to touch the overall process settings.

* threadpool: update calling thread prio and affinity only at start/resume

This avoids extra syscalls for each graph_compute()

* llama-bench: turn threadpool params into vectors, add output headers, etc

* llama-bench: add support for cool off between tests --delay

This helps for long running tests on platforms that are thermally limited (phones, laptops, etc).
--delay (disabled by default) introduces the sleep for N seconds before starting each test.

* threadpool: move process priority setting into the apps (bench and cli)

This avoids changing the overall process priority on Windows for the apps
that use ggml/llama.cpp directy.

* threadpool: move all pause/resume logic into ggml

* threadpool: futher api cleanup and prep for future refactoring

All threadpool related functions and structs use ggml_threadpool prefix.

* threadpool: minor indent fixes

* threadpool: improve setprioty error message

* Update examples/llama-bench/llama-bench.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* threadpool: fix indent in set_threadpool call

* use int32_t for n_thread type in public llama.cpp API

* threadpool: use _new and _free instead of _create and _release

* fix two more public APIs to use int32_t for n_threads

* build: set _GNU_SOURCE for Adroid

---------

Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
Co-authored-by: fmz <quic_fzaghlou@quic.com>
Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-09-24 19:45:08 +03:00
Johannes Gäßler
5d6dc19f04 tests: add gradient tests for all backends (ggml/932)
* tests: add gradient checking to test-backend-ops

* remove old comment

* reorder includes

* adjust SIN/COS parameters

* add documentation, use supports_op if possible
2024-09-24 19:45:08 +03:00
Johannes Gäßler
6eb7a0ffbd ggml: fix ggml_graph_cpy undefined behavior (ggml/943) 2024-09-02 15:24:50 +03:00
Salvatore Mesoraca
4a4a52bf98 ggml : fix cont with transposed tensors when one dimension is 1 (ggml/934)
* ggml_cont: fix issue with transposed tensors when one dimension is 1

when using multiple threads, it is not enough
to check for the tensors to be contiguous for
ggml_compute_forward_dup_same_cont to work correctly.
The tensors strides also need to match.

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Add ggml_cont tests

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Remove dead code

it isn't possible to reach this code because
all these functions are invoked by ggml_compute_forward_dup
if and only if src0->type != dst->type

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Make ggml_compute_forward_dup_same_cont work with contiguous tensors

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

---------

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-02 15:24:50 +03:00
Georgi Gerganov
0e7798677a ggml : add SSM Metal kernels (llama/8546)
* ggml : add ggml_ssm_conv metal impl

* ggml : add ssm_scan metal impl

ggml-ci
2024-08-28 13:22:20 +03:00
Johannes Gäßler
24d8534bd8 CPU/CUDA: Gemma 2 FlashAttention support (llama/8542)
* CPU/CUDA: Gemma 2 FlashAttention support

* apply logit_softcap to scale in kernel

* disable logit softcapping tests on Metal

* remove metal check
2024-08-28 13:22:20 +03:00
compilade
9bf7250bf9 llama : simplify Mamba with advanced batch splits (llama/8526)
* llama : advanced batch splits

This includes equal-sequence-length batch splits which are useful
to simplify recurrent model operators.

* llama : always make recurrent state slots contiguous

* ggml : simplify mamba operators

* llama : fix integer signedness mixing

* llama : logits_all has priority over batch->logits

Otherwise, the server embeddings tests failed.
This was likely an existing problem but was only detected here
because of an additional assertion.

* llama : apply suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : fix t5 segfault

* llama : fix Mamba session save and restore

* llama : minor cosmetic changes

* llama : rename llama_reorder_outputs to llama_output_reorder

Also move it closer to llama_output_reserve.

* llama : fix pooled embeddings when using batches with equal_seqs

* minor : add struct members for clarity

ggml-ci

* llama : fix T5 segfault again

* llama : fix Mamba pooled embeddings with multiple sequences

Until the pooled embeddings are refactored to allow splitting
across ubatches for causal embeddings,
recurrent models can only process a single sequence per ubatch
when calculating pooled embeddings.

* llama : add llama_model_is_recurrent to simplify figuring that out

This will make it easier to more cleanly support RWKV-v6 and Mamba-2.

* llama : fix simple splits when the batch contains embeddings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-28 13:22:20 +03:00
Daniel Bevenius
60098d6204 ggml : move rope type enum to ggml.h (llama/8949)
* ggml : move rope type enum to ggml.h

This commit moves the `llama_rope_type` enum from `llama.h` to
`ggml.h` and changes its name to `ggml_rope_type`.

The motivation for this change is to address the TODO in `llama.h` and
use the enum in ggml.

Note: This commit does not change the `mode` parameter to be of type
`enum ggml_rope_type`. The name `mode` and its usage suggest that it
might be more generic and possibly used as a bit field for multiple
flags. Further investigation/discussion may be needed to determine
if `mode` should be restricted to RoPE types.

* squash! ggml : move rope type enum to ggml.h

This commit removes GGML_ROPE_TYPE_NONE and GGML_ROPE_TYPE_GLM from
ggml.h, and back the llama_rope_type enum.

I've kept the assert for GGML_ROPE_TYPE_GLM as I'm not sure if it is
safe to remove it yet.

* squash! ggml : move rope type enum to ggml.h

This commit removes the enum ggml_rope_type from ggml.h and replaces it
with a define (GGML_ROPE_TYPE_NEOX). This define is used in the code to
check if the mode is set to GPT-NeoX. Also the enum llama_rope_type has
been updated to reflect this change.

* squash! ggml : move rope type enum to ggml.h

This commit contains a suggestion enable the GGML_ROPE_TYPE_NEOX
macro/define to be passed to the shader compiler.

* squash! ggml : move rope type enum to ggml.h

This commit fixes the editorconfig-checker warnings.

* squash! ggml : move rope type enum to ggml.h

Update comment for ggml_rope function.

* Revert "squash! ggml : move rope type enum to ggml.h"

This reverts commit 6261222bd0dc0efd51f0fb0435ad3f16a5b52fd6.

* squash! ggml : move rope type enum to ggml.h

Add GGML_ROPE_TYPE_NEOX to rope_common.comp.

* remove extra line

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-08-28 13:22:20 +03:00
DavidKorczynski
317293e6a7 ggml: fix div-by-zero (llama/9003)
Fixes: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=70724

In order to access the above bug you need to login using one of the
emails in
https://github.com/google/oss-fuzz/blob/master/projects/llamacpp/project.yaml#L3-L5

Signed-off-by: David Korczynski <david@adalogics.com>
2024-08-28 13:22:20 +03:00
Johannes Gäßler
8954769aa2 feat: ref. cross entropy, add CUDA, fix grad test (ggml/929) 2024-08-28 13:22:20 +03:00
Johannes Gäßler
df06468d9e ggml: remove bad assert (ggml/928) 2024-08-28 13:22:20 +03:00
Johannes Gäßler
1fbd828a5d examples: add MNIST training + missing ops 2024-08-28 13:22:20 +03:00
Ronsor
3643120690 feat: add new sin and cos operators (ggml/919)
* ggml : add sin/cos operators

* ggml-cuda : add sin/cos operators

* ggml : add corresponding tests for sin/cos

* ggml : add backward computation for sin/cos operators

* ggml-vulkan : add sin/cos operators

* ggml-vulkan : add sin/cos shader source

* metal : add sin, cos

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-21 11:07:13 +03:00
Salvatore Mesoraca
993f0df419
ggml : support forward pass broadcasting in ggml_sub (ggml/914)
* ggml: support forward pass broadcasting in ggml_sub

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

* Use assert instead of GGML_ASSERT in ggml_compute_forward_sub_f32

The check is already performed in ggml_sub_impl

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>

---------

Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
2024-08-12 11:58:49 +03:00
Georgi Gerganov
ad37d26983
rpc : sanitize tensor data + warnings (llama/0)
Co-authored-by: slaren <slarengh@gmail.com>
2024-08-12 11:58:46 +03:00
Molly Sophia
4160b930f1 ggml : add epsilon as a parameter for group_norm (llama/8818)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-08-08 22:48:46 +03:00
Justine Tunney
7a96e661e4 ggml : fix overflows in elu function (llama/8866)
It's helpful to use expm1f(x), because expf(x)-1 will result in overflow
for 25% of single-precision floating point numbers.
2024-08-08 22:48:46 +03:00
jdomke
a902fb4ab2 ggml : reading the runtime sve config of the cpu (llama/8709)
* ggml : reading the runtime sve config of the cpu

* change to one time init to prevent performance drop

* prefix variable to avoid possible conflicts

* revert xxhash fix and add brackets

---------

Co-authored-by: domke <673751-domke@users.noreply.gitlab.com>
2024-08-08 22:48:46 +03:00
Sigbjørn Skjæret
6cb38c3673 Fix conversion of unnormalized BF16->BF16 weights (llama/7843)
* add truncate_bf16

* truncate intermediate fp32 if converting bf16 to bf16

* fix masking in __compute_fp32_to_bf16

* np.int16 no longer used

* missing cast and additional numpy 2.x fix

* ggml-impl : do not flush bf16 subnormals to zero

* ggml : add reference fp32 to bf16 conversion

The fast version is no longer equivalent for all platforms
because of the handling of subnormal values.

* gguf-py : remove flush to zero for bf16 subnormals

* gguf-py : remove float32 truncation to bf16

Rounding achieves the same thing in the cases where this was used.

* missed prototype update in merge

* merge cleanup

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2024-08-08 22:48:46 +03:00
Alex O'Connell
d26250f78c Build: Only include execinfo.h on linux systems that support it (llama/8783)
* Only enable backtrace on GLIBC linux systems

* fix missing file from copy

* use glibc macro instead of defining a custom one
2024-08-08 22:48:46 +03:00
l3utterfly
e60be821ce added android implementation of ggml_print_backtrace_symbols (llama/8751)
* added android implementation of ggml_print_backtrace_symbols

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-08-08 22:48:46 +03:00
Borislav Stanimirov
aa816c922c ggml : ignore more msvc warnings (ggml/906) 2024-08-08 22:48:46 +03:00
Georgi Gerganov
ef6dcf0d0c ggml : resolve sync conflicst (ggml/0)
ggml-ci
2024-08-08 22:48:46 +03:00
slaren
dd916a2852 ggml : reduce hash table reset cost (llama/8698)
* ggml : reduce hash table reset cost

* fix unreachable code warnings after GGML_ASSERT(false)

* GGML_ASSERT(false) -> GGML_ABORT("fatal error")

* GGML_ABORT use format string
2024-08-08 22:48:46 +03:00
DavidKorczynski
0620fe00ec ggml: handle ggml_init failure to fix NULL pointer deref (llama/8692)
`ggml_init` can fail if no unused context is found. In that case, a NULL-pointer deref will happen later in the code during a call to `ggml_set_on_alloc`.

This fixes it by bailing out if no context is found.
2024-08-08 22:48:46 +03:00