diff --git a/CMakeLists.txt b/CMakeLists.txt index b6bbc04..801c5cf 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -218,11 +218,17 @@ if (WHISPER_CUBLAS) add_compile_definitions(GGML_USE_CUBLAS) if (WHISPER_STATIC) - set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static) + if (WIN32) + # As of 12.3.1 CUDA Tookit for Windows does not offer a static cublas library + set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas CUDA::cublasLt) + else () + set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static) + endif() else() set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt) endif() + set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cuda_driver) else() message(FATAL_ERROR "cuBLAS not found") endif() diff --git a/Makefile b/Makefile index b1f5b7c..611dc0e 100644 --- a/Makefile +++ b/Makefile @@ -206,7 +206,7 @@ ifdef WHISPER_CUBLAS CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include - LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib + LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib WHISPER_OBJ += ggml-cuda.o NVCC = nvcc NVCCFLAGS = --forward-unknown-to-host-compiler -arch=$(CUDA_ARCH_FLAG) diff --git a/extra/sync-ggml-am.sh b/extra/sync-ggml-am.sh new file mode 100755 index 0000000..48be256 --- /dev/null +++ b/extra/sync-ggml-am.sh @@ -0,0 +1,138 @@ +#!/bin/bash +# +# Synchronize ggml changes to whisper.cpp +# +# Usage: +# +# $ cd /path/to/whisper.cpp +# $ ./extra/sync-ggml-am.sh +# + +set -e + +sd=$(dirname $0) +cd $sd/../ + +SRC_WHISPER=$(pwd) +SRC_GGML=$(cd ../ggml; pwd) + +if [ ! -d $SRC_GGML ]; then + echo "ggml not found at $SRC_GGML" + exit 1 +fi + +lc=$(cat $SRC_WHISPER/extra/sync-ggml.last) +echo "Syncing ggml changes since commit $lc" + +cd $SRC_GGML + +git log --oneline $lc..HEAD + +git format-patch $lc --stdout -- \ + include/ggml/ggml*.h \ + src/ggml*.h \ + src/ggml*.c \ + src/ggml*.cpp \ + src/ggml*.m \ + src/ggml*.metal \ + src/ggml*.cu \ + tests/test-opt.cpp \ + tests/test-grad0.cpp \ + tests/test-quantize-fns.cpp \ + tests/test-quantize-perf.cpp \ + tests/test-backend-ops.cpp \ + > $SRC_WHISPER/ggml-src.patch + +# delete files if empty +if [ ! -s $SRC_WHISPER/ggml-src.patch ]; then + rm -v $SRC_WHISPER/ggml-src.patch +fi + +cd $SRC_WHISPER + +if [ -f $SRC_WHISPER/ggml-src.patch ]; then + # replace PR numbers + # + # Subject: some text (#1234) + # Subject: some text (ggml/1234) + cat ggml-src.patch | sed -e 's/^Subject: \(.*\) (#\([0-9]*\))/Subject: \1 (ggml\/\2)/' > ggml-src.patch.tmp + mv ggml-src.patch.tmp ggml-src.patch + + cat ggml-src.patch | sed -e 's/^\(.*\) (#\([0-9]*\))$/\1 (ggml\/\2)/' > ggml-src.patch.tmp + mv ggml-src.patch.tmp ggml-src.patch + + # replace filenames: + # + # src/ggml.c -> ggml.c + # src/ggml-alloc.c -> ggml-alloc.c + # src/ggml-backend-impl.h -> ggml-backend-impl.h + # src/ggml-backend.c -> ggml-backend.c + # src/ggml-cuda.cu -> ggml-cuda.cu + # src/ggml-cuda.h -> ggml-cuda.h + # src/ggml-impl.h -> ggml-impl.h + # src/ggml-metal.h -> ggml-metal.h + # src/ggml-metal.m -> ggml-metal.m + # src/ggml-metal.metal -> ggml-metal.metal + # src/ggml-mpi.h -> ggml-mpi.h + # src/ggml-mpi.c -> ggml-mpi.c + # src/ggml-opencl.cpp -> ggml-opencl.cpp + # src/ggml-opencl.h -> ggml-opencl.h + # src/ggml-quants.c -> ggml-quants.c + # src/ggml-quants.h -> ggml-quants.h + # include/ggml/ggml.h -> ggml.h + # include/ggml/ggml-alloc.h -> ggml-alloc.h + # include/ggml/ggml-backend.h -> ggml-backend.h + # + # examples/common.h -> examples/common.h + # examples/common.cpp -> examples/common.cpp + # examples/common-ggml.h -> examples/common-ggml.h + # examples/common-ggml.cpp -> examples/common-ggml.cpp + # + # examples/whisper/whisper.h -> whisper.h + # examples/whisper/whisper.cpp -> whisper.cpp + # examples/whisper/main.cpp -> examples/main/main.cpp + # examples/whisper/quantize.cpp -> examples/quantize/quantize.cpp + + cat ggml-src.patch | sed \ + -e 's/src\/ggml\.c/ggml.c/g' \ + -e 's/src\/ggml-alloc\.c/ggml-alloc.c/g' \ + -e 's/src\/ggml-backend-impl\.h/ggml-backend-impl.h/g' \ + -e 's/src\/ggml-backend\.c/ggml-backend.c/g' \ + -e 's/src\/ggml-cuda\.cu/ggml-cuda.cu/g' \ + -e 's/src\/ggml-cuda\.h/ggml-cuda.h/g' \ + -e 's/src\/ggml-impl\.h/ggml-impl.h/g' \ + -e 's/src\/ggml-metal\.h/ggml-metal.h/g' \ + -e 's/src\/ggml-metal\.m/ggml-metal.m/g' \ + -e 's/src\/ggml-metal\.metal/ggml-metal.metal/g' \ + -e 's/src\/ggml-mpi\.h/ggml-mpi.h/g' \ + -e 's/src\/ggml-mpi\.c/ggml-mpi.c/g' \ + -e 's/src\/ggml-opencl\.cpp/ggml-opencl.cpp/g' \ + -e 's/src\/ggml-opencl\.h/ggml-opencl.h/g' \ + -e 's/src\/ggml-quants\.c/ggml-quants.c/g' \ + -e 's/src\/ggml-quants\.h/ggml-quants.h/g' \ + -e 's/include\/ggml\/ggml\.h/ggml.h/g' \ + -e 's/include\/ggml\/ggml-alloc\.h/ggml-alloc.h/g' \ + -e 's/include\/ggml\/ggml-backend\.h/ggml-backend.h/g' \ + -e 's/examples\/common\.h/examples\/common.h/g' \ + -e 's/examples\/common\.cpp/examples\/common.cpp/g' \ + -e 's/examples\/common-ggml\.h/examples\/common-ggml.h/g' \ + -e 's/examples\/common-ggml\.cpp/examples\/common-ggml.cpp/g' \ + -e 's/examples\/whisper\/whisper\.h/whisper.h/g' \ + -e 's/examples\/whisper\/whisper\.cpp/whisper.cpp/g' \ + -e 's/examples\/whisper\/main\.cpp/examples\/main\/main.cpp/g' \ + -e 's/examples\/whisper\/quantize\.cpp/examples\/quantize\/quantize.cpp/g' \ + > ggml-src.patch.tmp + mv ggml-src.patch.tmp ggml-src.patch + + git am ggml-src.patch + + rm -v $SRC_WHISPER/ggml-src.patch +fi + +# update last commit +cd $SRC_GGML +git log -1 --format=%H > $SRC_WHISPER/extra/sync-ggml.last + +echo "Done" + +exit 0 diff --git a/extra/sync-ggml.last b/extra/sync-ggml.last new file mode 100644 index 0000000..3b196fa --- /dev/null +++ b/extra/sync-ggml.last @@ -0,0 +1 @@ +1467a4eb71bdb5ac316d248a7f3f26cdadc56b68 diff --git a/ggml-backend.c b/ggml-backend.c index 0c8c9ec..2c37520 100644 --- a/ggml-backend.c +++ b/ggml-backend.c @@ -297,7 +297,7 @@ static void ggml_backend_registry_init(void) { void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) { GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG); - int id = ggml_backend_registry_count; + size_t id = ggml_backend_registry_count; ggml_backend_registry[id] = (struct ggml_backend_reg) { /* .name = */ {0}, @@ -330,6 +330,8 @@ size_t ggml_backend_reg_find_by_name(const char * name) { return i; } } + + // not found return SIZE_MAX; } @@ -340,15 +342,15 @@ ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) const char * params = strchr(backend_str, ':'); char backend_name[128]; if (params == NULL) { - strcpy(backend_name, backend_str); + snprintf(backend_name, sizeof(backend_name), "%s", backend_str); params = ""; } else { - strncpy(backend_name, backend_str, params - backend_str); - backend_name[params - backend_str] = '\0'; + snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str); params++; } size_t backend_i = ggml_backend_reg_find_by_name(backend_name); + if (backend_i == SIZE_MAX) { fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name); return NULL; @@ -396,18 +398,12 @@ static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { } static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { - GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); - GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); - memcpy((char *)tensor->data + offset, data, size); GGML_UNUSED(buffer); } static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { - GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); - GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); - memcpy(data, (const char *)tensor->data + offset, size); GGML_UNUSED(buffer); @@ -618,10 +614,14 @@ static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_c } static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { - return true; + switch (op->op) { + case GGML_OP_MUL_MAT: + return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type; + default: + return true; + } GGML_UNUSED(backend); - GGML_UNUSED(op); } static struct ggml_backend_i cpu_backend_i = { diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 7c2a834..9a9effc 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -68,8 +68,9 @@ #define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault) #endif #define cudaMemcpy hipMemcpy -#define cudaMemcpy2DAsync hipMemcpy2DAsync #define cudaMemcpyAsync hipMemcpyAsync +#define cudaMemcpyPeerAsync hipMemcpyPeerAsync +#define cudaMemcpy2DAsync hipMemcpy2DAsync #define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice #define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost #define cudaMemcpyHostToDevice hipMemcpyHostToDevice @@ -86,17 +87,29 @@ #define cudaStream_t hipStream_t #define cudaSuccess hipSuccess #define __trap abort +#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS +#define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED +#define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED +#define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE +#define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH +#define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR +#define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED +#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR +#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED #else #include +#include #include #include -// CUDA 10.2 does not have these macro definitions. -#ifndef CUBLAS_TF32_TENSOR_OP_MATH + +#if CUDART_VERSION < 11020 +#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED #define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH #define CUBLAS_COMPUTE_16F CUDA_R_16F #define CUBLAS_COMPUTE_32F CUDA_R_32F #define cublasComputeType_t cudaDataType_t -#endif +#endif // CUDART_VERSION < 11020 + #endif // defined(GGML_USE_HIPBLAS) #include "ggml-cuda.h" @@ -151,7 +164,7 @@ static __device__ __forceinline__ int __vsubss4(const int a, const int b) { const int8x4_t vb = reinterpret_cast(b); #if __has_builtin(__builtin_elementwise_sub_sat) const int8x4_t c = __builtin_elementwise_sub_sat(va, vb); - return reinterpret_cast(c); + return reinterpret_cast(c); #else int8x4_t c; int16_t tmp; @@ -162,7 +175,7 @@ static __device__ __forceinline__ int __vsubss4(const int a, const int b) { if(tmp < std::numeric_limits::min()) tmp = std::numeric_limits::min(); c[i] = tmp; } - return reinterpret_cast(c); + return reinterpret_cast(c); #endif // __has_builtin(__builtin_elementwise_sub_sat) } @@ -200,45 +213,59 @@ static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) { static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); -#define CUDA_CHECK(err) \ - do { \ - cudaError_t err_ = (err); \ - if (err_ != cudaSuccess) { \ - int id; \ - cudaGetDevice(&id); \ - fprintf(stderr, "\nCUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \ - cudaGetErrorString(err_)); \ - fprintf(stderr, "current device: %d\n", id); \ - GGML_ASSERT(!"CUDA error"); \ - } \ +[[noreturn]] +static void ggml_cuda_error(const char * stmt, const char * func, const char * file, const int line, const char * msg) { + int id = -1; // in case cudaGetDevice fails + cudaGetDevice(&id); + + fprintf(stderr, "CUDA error: %s\n", msg); + fprintf(stderr, " current device: %d, in function %s at %s:%d\n", id, func, file, line); + fprintf(stderr, " %s\n", stmt); + // abort with GGML_ASSERT to get a stack trace + GGML_ASSERT(!"CUDA error"); +} + +#define CUDA_CHECK_GEN(err, success, error_fn) \ + do { \ + auto err_ = (err); \ + if (err_ != (success)) { \ + ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_)); \ + } \ } while (0) +#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString) + #if CUDART_VERSION >= 12000 -#define CUBLAS_CHECK(err) \ - do { \ - cublasStatus_t err_ = (err); \ - if (err_ != CUBLAS_STATUS_SUCCESS) { \ - int id; \ - cudaGetDevice(&id); \ - fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \ - err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \ - fprintf(stderr, "current device: %d\n", id); \ - GGML_ASSERT(!"cuBLAS error"); \ - } \ - } while (0) + static const char * cublas_get_error_str(const cublasStatus_t err) { + return cublasGetStatusString(err); + } #else -#define CUBLAS_CHECK(err) \ - do { \ - cublasStatus_t err_ = (err); \ - if (err_ != CUBLAS_STATUS_SUCCESS) { \ - int id; \ - cudaGetDevice(&id); \ - fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \ - fprintf(stderr, "current device: %d\n", id); \ - GGML_ASSERT(!"cuBLAS error"); \ - } \ - } while (0) -#endif // CUDART_VERSION >= 11 + static const char * cublas_get_error_str(const cublasStatus_t err) { + switch (err) { + case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS"; + case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED"; + case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED"; + case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE"; + case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH"; + case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR"; + case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED"; + case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR"; + case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED"; + default: return "unknown error"; + } + } +#endif // CUDART_VERSION >= 12000 + +#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str) + +#if !defined(GGML_USE_HIPBLAS) +static const char * cu_get_error_str(CUresult err) { + const char * err_str; + cuGetErrorString(err, &err_str); + return err_str; +} +#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str) +#endif #if CUDART_VERSION >= 11100 #define GGML_CUDA_ASSUME(x) __builtin_assume(x) @@ -294,10 +321,10 @@ typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * s typedef void (*ggml_cuda_op_mul_mat_t)( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, - const int64_t src1_padded_row_size, const cudaStream_t & stream); + const int64_t src1_padded_row_size, cudaStream_t stream); typedef void (*ggml_cuda_op_flatten_t)( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream); + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream); // QK = number of values after dequantization // QR = QK / number of values before dequantization @@ -503,22 +530,29 @@ struct ggml_tensor_extra_gpu { // this is faster on Windows // probably because the Windows CUDA libraries forget to make this check before invoking the drivers -inline cudaError_t ggml_cuda_set_device(const int device) { +static void ggml_cuda_set_device(const int device) { int current_device; CUDA_CHECK(cudaGetDevice(¤t_device)); if (device == current_device) { - return cudaSuccess; + return; } - return cudaSetDevice(device); + CUDA_CHECK(cudaSetDevice(device)); } static int g_device_count = -1; static int g_main_device = 0; -static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES]; static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0}; +struct cuda_device_capabilities { + int cc; // compute capability + bool vmm; // virtual memory support + size_t vmm_granularity; // granularity of virtual memory +}; + +static cuda_device_capabilities g_device_caps[GGML_CUDA_MAX_DEVICES] = { {0, false, 0} }; + static void * g_scratch_buffer = nullptr; static size_t g_scratch_size = 0; // disabled by default static size_t g_scratch_offset = 0; @@ -560,6 +594,7 @@ static __device__ __forceinline__ float warp_reduce_max(float x) { static __device__ __forceinline__ float op_repeat(const float a, const float b) { return b; + GGML_UNUSED(a); } static __device__ __forceinline__ float op_add(const float a, const float b) { @@ -681,7 +716,7 @@ static __global__ void silu_f32(const float * x, float * dst, const int k) { dst[i] = x[i] / (1.0f + expf(-x[i])); } -static __global__ void gelu_quick_f32(const float *x, float *dst, int k) { +static __global__ void gelu_quick_f32(const float * x, float * dst, int k) { const float GELU_QUICK_COEF = -1.702f; const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { @@ -690,7 +725,7 @@ static __global__ void gelu_quick_f32(const float *x, float *dst, int k) { dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i]))); } -static __global__ void tanh_f32(const float *x, float *dst, int k) { +static __global__ void tanh_f32(const float * x, float * dst, int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; @@ -707,7 +742,7 @@ static __global__ void relu_f32(const float * x, float * dst, const int k) { dst[i] = fmaxf(x[i], 0); } -static __global__ void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope) { +static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; @@ -760,7 +795,7 @@ static __global__ void norm_f32(const float * x, float * dst, const int ncols, c } } -static __global__ void concat_f32(const float *x,const float *y, float *dst, const int ne0, const int ne02) { +static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) { int nidx = threadIdx.x + blockIdx.x * blockDim.x; if (nidx >= ne0) { return; @@ -785,7 +820,7 @@ static __global__ void concat_f32(const float *x,const float *y, float *dst, c } } -static __global__ void upscale_f32(const float *x, float *dst, const int ne00, const int nb02, const int scale_factor) { +static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int nb02, const int scale_factor) { int ne0 = ne00 * scale_factor; int nidx = threadIdx.x + blockIdx.x * blockDim.x; if (nidx >= ne0) { @@ -805,7 +840,7 @@ static __global__ void upscale_f32(const float *x, float *dst, const int ne00, dst[offset_dst] = x[offset_src]; } -static __global__ void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02) { +static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02) { int nidx = threadIdx.x + blockIdx.x * blockDim.x; if (nidx >= ne0) { return; @@ -4707,7 +4742,6 @@ static __global__ void mul_mat_p021_f16_f32( const int row_y = col_x; - // y is not transposed but permuted const int iy = channel*nrows_y + row_y; @@ -5382,7 +5416,7 @@ struct bin_bcast_cuda { cne[3] = 1; }; - auto collapse_nb = [](size_t cnb[], int64_t cne[]) { + auto collapse_nb = [](size_t cnb[], const int64_t cne[]) { cnb[1] *= cne[1]; cnb[2] *= cne[2]; cnb[3] *= cne[3]; @@ -5875,7 +5909,7 @@ static void ggml_mul_mat_q4_0_q8_1_cuda( int id; CUDA_CHECK(cudaGetDevice(&id)); - const int compute_capability = g_compute_capabilities[id]; + const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= CC_RDNA2) { @@ -5920,7 +5954,7 @@ static void ggml_mul_mat_q4_1_q8_1_cuda( int id; CUDA_CHECK(cudaGetDevice(&id)); - const int compute_capability = g_compute_capabilities[id]; + const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= CC_RDNA2) { @@ -5965,7 +5999,7 @@ static void ggml_mul_mat_q5_0_q8_1_cuda( int id; CUDA_CHECK(cudaGetDevice(&id)); - const int compute_capability = g_compute_capabilities[id]; + const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= CC_RDNA2) { @@ -6010,7 +6044,7 @@ static void ggml_mul_mat_q5_1_q8_1_cuda( int id; CUDA_CHECK(cudaGetDevice(&id)); - const int compute_capability = g_compute_capabilities[id]; + const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= CC_RDNA2) { @@ -6055,7 +6089,7 @@ static void ggml_mul_mat_q8_0_q8_1_cuda( int id; CUDA_CHECK(cudaGetDevice(&id)); - const int compute_capability = g_compute_capabilities[id]; + const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= CC_RDNA2) { @@ -6100,7 +6134,7 @@ static void ggml_mul_mat_q2_K_q8_1_cuda( int id; CUDA_CHECK(cudaGetDevice(&id)); - const int compute_capability = g_compute_capabilities[id]; + const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= CC_RDNA2) { @@ -6147,7 +6181,7 @@ static void ggml_mul_mat_q3_K_q8_1_cuda( int id; CUDA_CHECK(cudaGetDevice(&id)); - const int compute_capability = g_compute_capabilities[id]; + const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= CC_RDNA2) { @@ -6193,7 +6227,7 @@ static void ggml_mul_mat_q4_K_q8_1_cuda( int id; CUDA_CHECK(cudaGetDevice(&id)); - const int compute_capability = g_compute_capabilities[id]; + const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= CC_RDNA2) { @@ -6238,7 +6272,7 @@ static void ggml_mul_mat_q5_K_q8_1_cuda( int id; CUDA_CHECK(cudaGetDevice(&id)); - const int compute_capability = g_compute_capabilities[id]; + const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= CC_RDNA2) { @@ -6283,7 +6317,7 @@ static void ggml_mul_mat_q6_K_q8_1_cuda( int id; CUDA_CHECK(cudaGetDevice(&id)); - const int compute_capability = g_compute_capabilities[id]; + const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= CC_RDNA2) { @@ -6543,30 +6577,30 @@ struct scoped_spin_lock { scoped_spin_lock& operator=(const scoped_spin_lock&) = delete; }; -struct cuda_buffer { +static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT; + +// #define DEBUG_CUDA_MALLOC +struct ggml_cuda_buffer { void * ptr = nullptr; size_t size = 0; }; -static cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS]; -static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT; +static ggml_cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS]; +static size_t g_cuda_pool_size[GGML_CUDA_MAX_DEVICES] = {0}; -static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { +static void * ggml_cuda_pool_malloc_leg(int device, size_t size, size_t * actual_size) { scoped_spin_lock lock(g_cuda_pool_lock); - int id; - CUDA_CHECK(cudaGetDevice(&id)); #ifdef DEBUG_CUDA_MALLOC int nnz = 0; - size_t max_size = 0, tot_size = 0; + size_t max_size = 0; #endif size_t best_diff = 1ull << 36; int ibest = -1; for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { - cuda_buffer& b = g_cuda_buffer_pool[id][i]; + ggml_cuda_buffer& b = g_cuda_buffer_pool[device][i]; if (b.ptr != nullptr) { #ifdef DEBUG_CUDA_MALLOC ++nnz; - tot_size += b.size; if (b.size > max_size) max_size = b.size; #endif if (b.size >= size) { @@ -6586,32 +6620,32 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { } } if (ibest >= 0) { - cuda_buffer& b = g_cuda_buffer_pool[id][ibest]; + ggml_cuda_buffer& b = g_cuda_buffer_pool[device][ibest]; void * ptr = b.ptr; *actual_size = b.size; b.ptr = nullptr; b.size = 0; return ptr; } -#ifdef DEBUG_CUDA_MALLOC - fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz, - (uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024)); -#endif void * ptr; size_t look_ahead_size = (size_t) (1.05 * size); look_ahead_size = 256 * ((look_ahead_size + 255)/256); + ggml_cuda_set_device(device); CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size)); *actual_size = look_ahead_size; + g_cuda_pool_size[device] += look_ahead_size; +#ifdef DEBUG_CUDA_MALLOC + fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, id, nnz, + (uint32_t)(max_size/1024/1024), (uint32_t)(g_cuda_pool_size[id]/1024/1024), (uint32_t)(size/1024/1024)); +#endif return ptr; } -static void ggml_cuda_pool_free(void * ptr, size_t size) { +static void ggml_cuda_pool_free_leg(int device, void * ptr, size_t size) { scoped_spin_lock lock(g_cuda_pool_lock); - int id; - CUDA_CHECK(cudaGetDevice(&id)); for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { - cuda_buffer& b = g_cuda_buffer_pool[id][i]; + ggml_cuda_buffer& b = g_cuda_buffer_pool[device][i]; if (b.ptr == nullptr) { b.ptr = ptr; b.size = size; @@ -6619,9 +6653,149 @@ static void ggml_cuda_pool_free(void * ptr, size_t size) { } } fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n"); + ggml_cuda_set_device(device); CUDA_CHECK(cudaFree(ptr)); + g_cuda_pool_size[device] -= size; } +#if !defined(GGML_USE_HIPBLAS) +// pool with virtual memory +static CUdeviceptr g_cuda_pool_addr[GGML_CUDA_MAX_DEVICES] = {0}; +static size_t g_cuda_pool_used[GGML_CUDA_MAX_DEVICES] = {0}; +static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 36; // 64 GB + +static void * ggml_cuda_pool_malloc_vmm(int device, size_t size, size_t * actual_size) { + scoped_spin_lock lock(g_cuda_pool_lock); + + // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types + const size_t alignment = 128; + size = alignment * ((size + alignment - 1) / alignment); + + size_t avail = g_cuda_pool_size[device] - g_cuda_pool_used[device]; + + if (size > avail) { + // round up to the next multiple of the granularity + size_t reserve_size = size - avail; + const size_t granularity = g_device_caps[device].vmm_granularity; + reserve_size = granularity * ((reserve_size + granularity - 1) / granularity); + + GGML_ASSERT(g_cuda_pool_size[device] + reserve_size <= CUDA_POOL_VMM_MAX_SIZE); + + // allocate more physical memory + CUmemAllocationProp prop = {}; + prop.type = CU_MEM_ALLOCATION_TYPE_PINNED; + prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE; + prop.location.id = device; + CUmemGenericAllocationHandle handle; + CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0)); + + // reserve virtual address space (if not already reserved) + if (g_cuda_pool_addr[device] == 0) { + CU_CHECK(cuMemAddressReserve(&g_cuda_pool_addr[device], CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0)); + } + + // map at the end of the pool + CU_CHECK(cuMemMap(g_cuda_pool_addr[device] + g_cuda_pool_size[device], reserve_size, 0, handle, 0)); + + // the memory allocation handle is no longer needed after mapping + CU_CHECK(cuMemRelease(handle)); + + // set access + CUmemAccessDesc access = {}; + access.location.type = CU_MEM_LOCATION_TYPE_DEVICE; + access.location.id = device; + access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE; + CU_CHECK(cuMemSetAccess(g_cuda_pool_addr[device] + g_cuda_pool_size[device], reserve_size, &access, 1)); + + // add to the pool + g_cuda_pool_size[device] += reserve_size; + + //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n", + // id, (unsigned long long) (g_cuda_pool_size[id]/1024/1024), + // (unsigned long long) (reserve_size/1024/1024)); + } + + GGML_ASSERT(g_cuda_pool_addr[device] != 0); + + void * ptr = (void *) (g_cuda_pool_addr[device] + g_cuda_pool_used[device]); + *actual_size = size; + g_cuda_pool_used[device] += size; + +#ifdef DEBUG_CUDA_MALLOC + printf("cuda pool[%d]: allocated %llu bytes at %llx [%s]\n", id, (unsigned long long) size, ptr); +#endif + + return ptr; +} + +static void ggml_cuda_pool_free_vmm(int device, void * ptr, size_t size) { + scoped_spin_lock lock(g_cuda_pool_lock); + +#ifdef DEBUG_CUDA_MALLOC + printf("cuda pool[%d]: freed %llu bytes at %llx\n", id, (unsigned long long) size, ptr); +#endif + + g_cuda_pool_used[device] -= size; + + // all deallocations must be in reverse order of the allocations + GGML_ASSERT(ptr == (void *) (g_cuda_pool_addr[device] + g_cuda_pool_used[device])); +} + +static void * ggml_cuda_pool_malloc(int device, size_t size, size_t * actual_size) { + if (g_device_caps[device].vmm) { + return ggml_cuda_pool_malloc_vmm(device, size, actual_size); + } else { + return ggml_cuda_pool_malloc_leg(device, size, actual_size); + } +} + +static void ggml_cuda_pool_free(int device, void * ptr, size_t size) { + if (g_device_caps[device].vmm) { + ggml_cuda_pool_free_vmm(device, ptr, size); + } else { + ggml_cuda_pool_free_leg(device, ptr, size); + } +} +#else +#define ggml_cuda_pool_malloc ggml_cuda_pool_malloc_leg +#define ggml_cuda_pool_free ggml_cuda_pool_free_leg +#endif // !defined(GGML_USE_HIPBLAS) + +template +struct cuda_pool_alloc { + int device = -1; + T * ptr = nullptr; + size_t actual_size = 0; + + // size is in number of elements + T * alloc(size_t size) { + GGML_ASSERT(ptr == nullptr); + CUDA_CHECK(cudaGetDevice(&device)); + ptr = (T *) ggml_cuda_pool_malloc(device, size * sizeof(T), &this->actual_size); + return ptr; + } + + cuda_pool_alloc(size_t size) { + alloc(size); + } + + ~cuda_pool_alloc() { + if (ptr != nullptr) { + ggml_cuda_pool_free(device, ptr, actual_size); + } + } + + T * get() { + return ptr; + } + + cuda_pool_alloc() = default; + cuda_pool_alloc(const cuda_pool_alloc &) = delete; + cuda_pool_alloc(cuda_pool_alloc &&) = delete; + cuda_pool_alloc& operator=(const cuda_pool_alloc &) = delete; + cuda_pool_alloc& operator=(cuda_pool_alloc &&) = delete; +}; + static bool g_cublas_loaded = false; bool ggml_cublas_loaded(void) { @@ -6660,16 +6834,33 @@ void ggml_init_cublas() { #endif fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, g_device_count); for (int id = 0; id < g_device_count; ++id) { + int device_vmm = 0; + +#if !defined(GGML_USE_HIPBLAS) + CUdevice device; + CU_CHECK(cuDeviceGet(&device, id)); + CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device)); + + if (device_vmm) { + CUmemAllocationProp alloc_prop = {}; + alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED; + alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE; + alloc_prop.location.id = id; + CU_CHECK(cuMemGetAllocationGranularity(&g_device_caps[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED)); + } +#endif // !defined(GGML_USE_HIPBLAS) + g_device_caps[id].vmm = !!device_vmm; + cudaDeviceProp prop; CUDA_CHECK(cudaGetDeviceProperties(&prop, id)); - fprintf(stderr, " Device %d: %s, compute capability %d.%d\n", id, prop.name, prop.major, prop.minor); + fprintf(stderr, " Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no"); g_tensor_split[id] = total_vram; total_vram += prop.totalGlobalMem; #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) - g_compute_capabilities[id] = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD; + g_device_caps[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD; #else - g_compute_capabilities[id] = 100*prop.major + 10*prop.minor; + g_device_caps[id].cc = 100*prop.major + 10*prop.minor; #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) } for (int id = 0; id < g_device_count; ++id) { @@ -6677,7 +6868,7 @@ void ggml_init_cublas() { } for (int id = 0; id < g_device_count; ++id) { - CUDA_CHECK(ggml_cuda_set_device(id)); + ggml_cuda_set_device(id); // create cuda streams for (int is = 0; is < MAX_STREAMS; ++is) { @@ -6729,8 +6920,7 @@ void * ggml_cuda_host_malloc(size_t size) { void * ptr = nullptr; cudaError_t err = cudaMallocHost((void **) &ptr, size); if (err != cudaSuccess) { - // The allocation error can be bypassed. A null ptr will assigned out of this function. - // This can fixed the OOM error in WSL. + // clear the error cudaGetLastError(); fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n", size/1024.0/1024.0, cudaGetErrorString(err)); @@ -6793,7 +6983,7 @@ static cudaError_t ggml_cuda_cpy_tensor_2d( static void ggml_cuda_op_get_rows( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_d, const float * src1_d, float * dst_d, const cudaStream_t & stream) { + const float * src0_d, const float * src1_d, float * dst_d, cudaStream_t stream) { GGML_ASSERT(src1->type == GGML_TYPE_I32); GGML_ASSERT(dst->type == GGML_TYPE_F32); @@ -6835,9 +7025,9 @@ static void ggml_cuda_op_get_rows( } template -inline void ggml_cuda_op_bin_bcast( +static void ggml_cuda_op_bin_bcast( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -6856,7 +7046,7 @@ inline void ggml_cuda_op_bin_bcast( static void ggml_cuda_op_repeat( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_d, const float * src1_d, float * dst_d, const cudaStream_t & main_stream) { + const float * src0_d, const float * src1_d, float * dst_d, cudaStream_t main_stream) { ggml_cuda_op_bin_bcast>(dst, src0, dst, nullptr, src0_d, dst_d, main_stream); @@ -6864,16 +7054,16 @@ static void ggml_cuda_op_repeat( (void) src1_d; } -inline void ggml_cuda_op_add( +static void ggml_cuda_op_add( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { ggml_cuda_op_bin_bcast>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream); } -inline void ggml_cuda_op_acc( +static void ggml_cuda_op_acc( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -6890,23 +7080,23 @@ inline void ggml_cuda_op_acc( (void) dst; } -inline void ggml_cuda_op_mul( +static void ggml_cuda_op_mul( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { ggml_cuda_op_bin_bcast>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream); } -inline void ggml_cuda_op_div( +static void ggml_cuda_op_div( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { ggml_cuda_op_bin_bcast>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream); } -inline void ggml_cuda_op_gelu( +static void ggml_cuda_op_gelu( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -6918,9 +7108,9 @@ inline void ggml_cuda_op_gelu( (void) src1_dd; } -inline void ggml_cuda_op_silu( +static void ggml_cuda_op_silu( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -6932,9 +7122,9 @@ inline void ggml_cuda_op_silu( (void) src1_dd; } -inline void ggml_cuda_op_gelu_quick( +static void ggml_cuda_op_gelu_quick( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -6946,9 +7136,9 @@ inline void ggml_cuda_op_gelu_quick( (void) src1_dd; } -inline void ggml_cuda_op_tanh( +static void ggml_cuda_op_tanh( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -6960,9 +7150,9 @@ inline void ggml_cuda_op_tanh( (void) src1_dd; } -inline void ggml_cuda_op_relu( +static void ggml_cuda_op_relu( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -6974,9 +7164,9 @@ inline void ggml_cuda_op_relu( (void) src1_dd; } -inline void ggml_cuda_op_leaky_relu( +static void ggml_cuda_op_leaky_relu( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -6991,9 +7181,9 @@ inline void ggml_cuda_op_leaky_relu( (void) src1_dd; } -inline void ggml_cuda_op_sqr( +static void ggml_cuda_op_sqr( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -7005,9 +7195,9 @@ inline void ggml_cuda_op_sqr( (void) src1_dd; } -inline void ggml_cuda_op_norm( +static void ggml_cuda_op_norm( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -7025,10 +7215,9 @@ inline void ggml_cuda_op_norm( (void) src1_dd; } - -inline void ggml_cuda_op_group_norm( +static void ggml_cuda_op_group_norm( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -7042,9 +7231,9 @@ inline void ggml_cuda_op_group_norm( (void) src1_dd; } -inline void ggml_cuda_op_concat( +static void ggml_cuda_op_concat( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -7058,9 +7247,9 @@ inline void ggml_cuda_op_concat( (void) dst; } -inline void ggml_cuda_op_upscale( +static void ggml_cuda_op_upscale( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); @@ -7075,9 +7264,9 @@ inline void ggml_cuda_op_upscale( (void) src1_dd; } -inline void ggml_cuda_op_pad( +static void ggml_cuda_op_pad( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); @@ -7092,9 +7281,9 @@ inline void ggml_cuda_op_pad( (void) src1_dd; } -inline void ggml_cuda_op_rms_norm( +static void ggml_cuda_op_rms_norm( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -7112,10 +7301,10 @@ inline void ggml_cuda_op_rms_norm( (void) src1_dd; } -inline void ggml_cuda_op_mul_mat_q( +static void ggml_cuda_op_mul_mat_q( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, - const int64_t src1_padded_row_size, const cudaStream_t & stream) { + const int64_t src1_padded_row_size, cudaStream_t stream) { const int64_t ne00 = src0->ne[0]; @@ -7177,13 +7366,13 @@ inline void ggml_cuda_op_mul_mat_q( static int64_t get_row_rounding(ggml_type type) { int64_t min_compute_capability = INT_MAX; int64_t max_compute_capability = INT_MIN; - for (int64_t id = 0; id < g_device_count; ++id) { + for (int id = 0; id < g_device_count; ++id) { if (g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) { - if (min_compute_capability > g_compute_capabilities[id]) { - min_compute_capability = g_compute_capabilities[id]; + if (min_compute_capability > g_device_caps[id].cc) { + min_compute_capability = g_device_caps[id].cc; } - if (max_compute_capability < g_compute_capabilities[id]) { - max_compute_capability = g_compute_capabilities[id]; + if (max_compute_capability < g_device_caps[id].cc) { + max_compute_capability = g_device_caps[id].cc; } } } @@ -7235,10 +7424,10 @@ static int64_t get_row_rounding(ggml_type type) { #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) } -inline void ggml_cuda_op_mul_mat_vec_q( +static void ggml_cuda_op_mul_mat_vec_q( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, - const int64_t src1_padded_row_size, const cudaStream_t & stream) { + const int64_t src1_padded_row_size, cudaStream_t stream) { GGML_ASSERT(ggml_nrows(src1) == 1); @@ -7288,18 +7477,20 @@ inline void ggml_cuda_op_mul_mat_vec_q( (void) src1_padded_row_size; } -inline void ggml_cuda_op_dequantize_mul_mat_vec( +static void ggml_cuda_op_dequantize_mul_mat_vec( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, - const int64_t src1_padded_row_size, const cudaStream_t & stream) { + const int64_t src1_padded_row_size, cudaStream_t stream) { const int64_t ne00 = src0->ne[0]; const int64_t row_diff = row_high - row_low; + GGML_ASSERT(src1->type == GGML_TYPE_F32); + // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics #ifdef GGML_CUDA_F16 - size_t ash; - dfloat * src1_dfloat = nullptr; // dfloat == half + cuda_pool_alloc src1_dfloat_a; + half * src1_dfloat = nullptr; // dfloat == half bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 || @@ -7307,7 +7498,7 @@ inline void ggml_cuda_op_dequantize_mul_mat_vec( src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16; if (src1_convert_f16) { - src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash); + src1_dfloat = src1_dfloat_a.alloc(ne00); ggml_cpy_f32_f16_cuda((const char *) src1_ddf_i, (char *) src1_dfloat, ne00, ne00, 1, sizeof(float), 0, 0, ne00, 1, sizeof(half), 0, 0, stream); @@ -7355,12 +7546,6 @@ inline void ggml_cuda_op_dequantize_mul_mat_vec( break; } -#ifdef GGML_CUDA_F16 - if (src1_convert_f16) { - ggml_cuda_pool_free(src1_dfloat, ash); - } -#endif // GGML_CUDA_F16 - (void) src1; (void) dst; (void) src1_ddq_i; @@ -7368,10 +7553,10 @@ inline void ggml_cuda_op_dequantize_mul_mat_vec( (void) src1_padded_row_size; } -inline void ggml_cuda_op_mul_mat_cublas( +static void ggml_cuda_op_mul_mat_cublas( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, - const int64_t src1_padded_row_size, const cudaStream_t & stream) { + const int64_t src1_padded_row_size, cudaStream_t stream) { GGML_ASSERT(src0_dd_i != nullptr); GGML_ASSERT(src1_ddf_i != nullptr); @@ -7391,33 +7576,31 @@ inline void ggml_cuda_op_mul_mat_cublas( // ldc == nrows of the matrix that cuBLAS writes into int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff; - const int compute_capability = g_compute_capabilities[id]; + const int compute_capability = g_device_caps[id].cc; if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) { + //printf("this branch\n"); // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32 - half * src0_as_f16 = nullptr; - size_t src0_as = 0; + cuda_pool_alloc src0_as_f16; if (src0->type != GGML_TYPE_F16) { const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type); GGML_ASSERT(to_fp16_cuda != nullptr); size_t ne = row_diff*ne00; - src0_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src0_as); - to_fp16_cuda(src0_dd_i, src0_as_f16, ne, stream); + src0_as_f16.alloc(ne); + to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream); } - const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16; + const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get(); - half * src1_as_f16 = nullptr; - size_t src1_as = 0; + cuda_pool_alloc src1_as_f16; if (src1->type != GGML_TYPE_F16) { const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); GGML_ASSERT(to_fp16_cuda != nullptr); size_t ne = src1_ncols*ne10; - src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as); - to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream); + src1_as_f16.alloc(ne); + to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream); } - const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16; - size_t dst_as = 0; - half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as); + const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get(); + cuda_pool_alloc dst_f16(row_diff*src1_ncols); const half alpha_f16 = 1.0f; const half beta_f16 = 0.0f; @@ -7426,36 +7609,33 @@ inline void ggml_cuda_op_mul_mat_cublas( CUBLAS_CHECK( cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, row_diff, src1_ncols, ne10, - &alpha_f16, src0_ptr, CUDA_R_16F, ne00, - src1_ptr, CUDA_R_16F, ne10, - &beta_f16, dst_f16, CUDA_R_16F, ldc, + &alpha_f16, src0_ptr, CUDA_R_16F, ne00, + src1_ptr, CUDA_R_16F, ne10, + &beta_f16, dst_f16.get(), CUDA_R_16F, ldc, CUBLAS_COMPUTE_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); - to_fp32_cuda(dst_f16, dst_dd_i, row_diff*src1_ncols, stream); - - ggml_cuda_pool_free(dst_f16, dst_as); - - if (src0_as != 0) { - ggml_cuda_pool_free(src0_as_f16, src0_as); - } - - if (src1_as != 0) { - ggml_cuda_pool_free(src1_as_f16, src1_as); - } - } - else { - float * src0_ddq_as_f32 = nullptr; - size_t src0_as = 0; + to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream); + } else { + cuda_pool_alloc src0_ddq_as_f32; + cuda_pool_alloc src1_ddq_as_f32; if (src0->type != GGML_TYPE_F32) { const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); GGML_ASSERT(to_fp32_cuda != nullptr); - src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as); // NOLINT - to_fp32_cuda(src0_dd_i, src0_ddq_as_f32, row_diff*ne00, stream); + src0_ddq_as_f32.alloc(row_diff*ne00); + to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream); } - const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32; + if (src1->type != GGML_TYPE_F32) { + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type); + GGML_ASSERT(to_fp32_cuda != nullptr); + src1_ddq_as_f32.alloc(src1_ncols*ne10); + to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream); + } + + const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get(); + const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get(); const float alpha = 1.0f; const float beta = 0.0f; @@ -7464,13 +7644,9 @@ inline void ggml_cuda_op_mul_mat_cublas( CUBLAS_CHECK( cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, row_diff, src1_ncols, ne10, - &alpha, src0_ddf_i, ne00, - src1_ddf_i, ne10, - &beta, dst_dd_i, ldc)); - - if (src0_as != 0) { - ggml_cuda_pool_free(src0_ddq_as_f32, src0_as); - } + &alpha, src0_ddf_i, ne00, + src1_ddf1_i, ne10, + &beta, dst_dd_i, ldc)); } (void) dst; @@ -7478,9 +7654,9 @@ inline void ggml_cuda_op_mul_mat_cublas( (void) src1_padded_row_size; } -inline void ggml_cuda_op_rope( +static void ggml_cuda_op_rope( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); @@ -7558,9 +7734,9 @@ inline void ggml_cuda_op_rope( (void) src1_dd; } -inline void ggml_cuda_op_alibi( +static void ggml_cuda_op_alibi( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -7589,9 +7765,9 @@ inline void ggml_cuda_op_alibi( (void) src1_dd; } -inline void ggml_cuda_op_im2col( +static void ggml_cuda_op_im2col( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -7624,10 +7800,9 @@ inline void ggml_cuda_op_im2col( (void) src0_dd; } - -inline void ggml_cuda_op_sum_rows( +static void ggml_cuda_op_sum_rows( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -7642,9 +7817,9 @@ inline void ggml_cuda_op_sum_rows( (void) src1_dd; } -inline void ggml_cuda_op_argsort( +static void ggml_cuda_op_argsort( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_I32); @@ -7661,9 +7836,9 @@ inline void ggml_cuda_op_argsort( (void) src1_dd; } -inline void ggml_cuda_op_diag_mask_inf( +static void ggml_cuda_op_diag_mask_inf( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -7681,9 +7856,9 @@ inline void ggml_cuda_op_diag_mask_inf( (void) src1_dd; } -inline void ggml_cuda_op_soft_max( +static void ggml_cuda_op_soft_max( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -7702,9 +7877,9 @@ inline void ggml_cuda_op_soft_max( (void) dst; } -inline void ggml_cuda_op_scale( +static void ggml_cuda_op_scale( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -7720,9 +7895,9 @@ inline void ggml_cuda_op_scale( (void) src1_dd; } -inline void ggml_cuda_op_clamp( +static void ggml_cuda_op_clamp( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -7762,18 +7937,17 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s float * src1_ddf = nullptr; float * dst_ddf = nullptr; - // as = actual size - size_t src0_asf = 0; - size_t src1_asf = 0; - size_t dst_asf = 0; + cuda_pool_alloc src0_f; + cuda_pool_alloc src1_f; + cuda_pool_alloc dst_f; ggml_cuda_set_device(g_main_device); - const cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; + cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; if (src0_on_device) { src0_ddf = (float *) src0_extra->data_device[g_main_device]; } else { - src0_ddf = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_asf); + src0_ddf = src0_f.alloc(ggml_nelements(src0)); CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream)); } @@ -7781,14 +7955,14 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s if (src1_on_device) { src1_ddf = (float *) src1_extra->data_device[g_main_device]; } else { - src1_ddf = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src1), &src1_asf); + src1_ddf = src1_f.alloc(ggml_nelements(src1)); CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf, src1, 0, 0, 0, nrows1, main_stream)); } } if (dst_on_device) { dst_ddf = (float *) dst_extra->data_device[g_main_device]; } else { - dst_ddf = (float *) ggml_cuda_pool_malloc(ggml_nbytes(dst), &dst_asf); + dst_ddf = dst_f.alloc(ggml_nelements(dst)); } // do the computation @@ -7800,16 +7974,6 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream)); } - if (src0_asf > 0) { - ggml_cuda_pool_free(src0_ddf, src0_asf); - } - if (src1_asf > 0) { - ggml_cuda_pool_free(src1_ddf, src1_asf); - } - if (dst_asf > 0) { - ggml_cuda_pool_free(dst_ddf, dst_asf); - } - if (dst->backend == GGML_BACKEND_CPU) { CUDA_CHECK(cudaDeviceSynchronize()); } @@ -7826,12 +7990,12 @@ static void ggml_cuda_set_peer_access(const int n_tokens) { #ifdef NDEBUG for (int id = 0; id < g_device_count; ++id) { - CUDA_CHECK(ggml_cuda_set_device(id)); + ggml_cuda_set_device(id); CUDA_CHECK(cudaDeviceSynchronize()); } for (int id = 0; id < g_device_count; ++id) { - CUDA_CHECK(ggml_cuda_set_device(id)); + ggml_cuda_set_device(id); for (int id_other = 0; id_other < g_device_count; ++id_other) { if (id == id_other) { @@ -7865,7 +8029,6 @@ static void ggml_cuda_op_mul_mat( const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; - const int64_t nrows0 = ggml_nrows(src0); const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; @@ -7883,6 +8046,7 @@ static void ggml_cuda_op_mul_mat( GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT); GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1)); GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0); @@ -7908,27 +8072,29 @@ static void ggml_cuda_op_mul_mat( GGML_ASSERT(!(split && ne03 > 1)); GGML_ASSERT(!(split && ne02 < ne12)); - // dd = data device - char * src0_dd[GGML_CUDA_MAX_DEVICES] = {nullptr}; - float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float - char * src1_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // q8_1 - float * dst_dd[GGML_CUDA_MAX_DEVICES] = {nullptr}; + struct dev_data { + cuda_pool_alloc src0_dd_alloc; + cuda_pool_alloc src1_ddf_alloc; + cuda_pool_alloc src1_ddq_alloc; + cuda_pool_alloc dst_dd_alloc; - // as = actual size - size_t src0_as[GGML_CUDA_MAX_DEVICES] = {0}; - size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0}; - size_t src1_asq[GGML_CUDA_MAX_DEVICES] = {0}; - size_t dst_as[GGML_CUDA_MAX_DEVICES] = {0}; + char * src0_dd = nullptr; + float * src1_ddf = nullptr; // float + char * src1_ddq = nullptr; // q8_1 + float * dst_dd = nullptr; - int64_t row_low[GGML_CUDA_MAX_DEVICES]; - int64_t row_high[GGML_CUDA_MAX_DEVICES]; + int64_t row_low; + int64_t row_high; + }; + + dev_data dev[GGML_CUDA_MAX_DEVICES]; int used_devices = 0; - for (int64_t id = 0; id < g_device_count; ++id) { + for (int id = 0; id < g_device_count; ++id) { // by default, use all rows - row_low[id] = 0; - row_high[id] = ne01; + dev[id].row_low = 0; + dev[id].row_high = ne01; // for multi GPU, get the row boundaries from tensor split // and round to mul_mat_q tile sizes @@ -7936,19 +8102,23 @@ static void ggml_cuda_op_mul_mat( const int64_t rounding = get_row_rounding(src0->type); if (id != 0) { - row_low[id] = ne01*g_tensor_split[id]; - row_low[id] -= row_low[id] % rounding; + dev[id].row_low = ne01*g_tensor_split[id]; + if (dev[id].row_low < ne01) { + dev[id].row_low -= dev[id].row_low % rounding; + } } if (id != g_device_count - 1) { - row_high[id] = ne01*g_tensor_split[id + 1]; - row_high[id] -= row_high[id] % rounding; + dev[id].row_high = ne01*g_tensor_split[id + 1]; + if (dev[id].row_high < ne01) { + dev[id].row_high -= dev[id].row_high % rounding; + } } } } - for (int64_t id = 0; id < g_device_count; ++id) { - if ((!split && id != g_main_device) || row_low[id] == row_high[id]) { + for (int id = 0; id < g_device_count; ++id) { + if ((!split && id != g_main_device) || dev[id].row_low == dev[id].row_high) { continue; } @@ -7958,42 +8128,41 @@ static void ggml_cuda_op_mul_mat( const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device; ggml_cuda_set_device(id); - const cudaStream_t stream = g_cudaStreams[id][0]; + cudaStream_t stream = g_cudaStreams[id][0]; if (src0_on_device && src0_is_contiguous) { - src0_dd[id] = (char *) src0_extra->data_device[id]; + dev[id].src0_dd = (char *) src0_extra->data_device[id]; } else { - // const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0); - src0_dd[id] = (char *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_as[id]); + dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ggml_nbytes(src0)); } if (src1_on_device && src1_is_contiguous) { - src1_ddf[id] = (float *) src1_extra->data_device[id]; + dev[id].src1_ddf = (float *) src1_extra->data_device[id]; } else { - src1_ddf[id] = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src1), &src1_asf[id]); + dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ggml_nelements(src1)); } if (convert_src1_to_q8_1) { - src1_ddq[id] = (char *) ggml_cuda_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]); + dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs); if (src1_on_device && src1_is_contiguous) { - quantize_row_q8_1_cuda(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream); + quantize_row_q8_1_cuda(dev[id].src1_ddf, dev[id].src1_ddq, ne10, nrows1, src1_padded_col_size, stream); CUDA_CHECK(cudaGetLastError()); } } if (dst_on_device) { - dst_dd[id] = (float *) dst_extra->data_device[id]; + dev[id].dst_dd = (float *) dst_extra->data_device[id]; } else { - const size_t size_dst_ddf = split ? (row_high[id]-row_low[id])*ne1*sizeof(float) : ggml_nbytes(dst); - dst_dd[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_as[id]); + const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst); + dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(size_dst_ddf); } } // if multiple devices are used they need to wait for the main device // here an event is recorded that signals that the main device has finished calculating the input data if (split && used_devices > 1) { - CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + ggml_cuda_set_device(g_main_device); CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device][0], g_cudaStreams[g_main_device][0])); } @@ -8002,17 +8171,17 @@ static void ggml_cuda_op_mul_mat( const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0; const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride; - for (int64_t id = 0; id < g_device_count; ++id) { - if ((!split && id != g_main_device) || row_low[id] == row_high[id]) { + for (int id = 0; id < g_device_count; ++id) { + if ((!split && id != g_main_device) || dev[id].row_low == dev[id].row_high) { continue; } const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device; const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device; - const int64_t row_diff = row_high[id] - row_low[id]; + const int64_t row_diff = dev[id].row_high - dev[id].row_low; ggml_cuda_set_device(id); - const cudaStream_t stream = g_cudaStreams[id][is]; + cudaStream_t stream = g_cudaStreams[id][is]; // wait for main GPU data if necessary if (split && (id != g_main_device || is != 0)) { @@ -8026,34 +8195,34 @@ static void ggml_cuda_op_mul_mat( const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs; // for split tensors the data begins at i0 == i0_offset_low - char * src0_dd_i = src0_dd[id] + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs; - float * src1_ddf_i = src1_ddf[id] + (i0*ne11 + src1_col_0) * ne10; - char * src1_ddq_i = src1_ddq[id] + src1_ddq_i_offset; - float * dst_dd_i = dst_dd[id] + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff); + char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs; + float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10; + char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset; + float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff); // the main device memory buffer can be on VRAM scratch, with space for all partial results // in that case an offset on dst_ddf_i is needed if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) { - dst_dd_i += row_low[id]; // offset is 0 if no tensor split + dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split } // copy src0, src1 to device if necessary if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) { if (id != g_main_device) { if (convert_src1_to_q8_1) { - char * src1_ddq_i_source = src1_ddq[g_main_device] + src1_ddq_i_offset; - CUDA_CHECK(cudaMemcpyAsync(src1_ddq_i, src1_ddq_i_source, src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, - cudaMemcpyDeviceToDevice, stream)); + char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset; + CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddq_i, id, src1_ddq_i_source, g_main_device, + src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream)); } else { float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device]; src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10; - CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_ncols*ne10*sizeof(float), - cudaMemcpyDeviceToDevice, stream)); + CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, g_main_device, + src1_ncols*ne10*sizeof(float), stream)); } } } else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) { CUDA_CHECK(ggml_cuda_cpy_tensor_2d( - src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream)); + src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream)); } else { GGML_ASSERT(false); } @@ -8064,12 +8233,12 @@ static void ggml_cuda_op_mul_mat( } if (src1_col_0 == 0 && (!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) { - CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, row_low[id], row_high[id], stream)); + CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream)); } // do the computation op(src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i, - row_low[id], row_high[id], src1_ncols, src1_padded_col_size, stream); + dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream); CUDA_CHECK(cudaGetLastError()); // copy dst to host or other device if necessary @@ -8093,9 +8262,25 @@ static void ggml_cuda_op_mul_mat( // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results. float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); - dhf_dst_i += src1_col_0*ne0 + row_low[id]; - CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), dst_dd_i, row_diff*sizeof(float), - row_diff*sizeof(float), src1_ncols, kind, stream)); + dhf_dst_i += src1_col_0*ne0 + dev[id].row_low; +#if !defined(GGML_USE_HIPBLAS) + if (kind == cudaMemcpyDeviceToDevice) { + // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices + cudaMemcpy3DPeerParms p = {}; + p.dstDevice = g_main_device; + p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols); + p.srcDevice = id; + p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols); + p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1); + CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream)); + } else +#endif + { + CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), + dst_dd_i, row_diff*sizeof(float), + row_diff*sizeof(float), src1_ncols, + kind, stream)); + } } else { float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); @@ -8112,35 +8297,14 @@ static void ggml_cuda_op_mul_mat( } } - for (int64_t id = 0; id < g_device_count; ++id) { - if ((!split && id != g_main_device) || row_low[id] == row_high[id]) { - continue; - } - CUDA_CHECK(ggml_cuda_set_device(id)); - - // free buffers again when done - if (src0_as[id] > 0) { - ggml_cuda_pool_free(src0_dd[id], src0_as[id]); - } - if (src1_asf[id] > 0) { - ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]); - } - if (src1_asq[id] > 0) { - ggml_cuda_pool_free(src1_ddq[id], src1_asq[id]); - } - if (dst_as[id] > 0) { - ggml_cuda_pool_free(dst_dd[id], dst_as[id]); - } - } - // main device waits for all other devices to be finished if (split && g_device_count > 1) { int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE; is_max = is_max <= MAX_STREAMS ? is_max : MAX_STREAMS; - CUDA_CHECK(ggml_cuda_set_device(g_main_device)); - for (int64_t id = 0; id < g_device_count; ++id) { - if (row_low[id] == row_high[id]) { + ggml_cuda_set_device(g_main_device); + for (int id = 0; id < g_device_count; ++id) { + if (dev[id].row_low == dev[id].row_high) { continue; } for (int64_t is = 0; is < is_max; ++is) { @@ -8150,7 +8314,7 @@ static void ggml_cuda_op_mul_mat( } if (dst->backend == GGML_BACKEND_CPU) { - CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + ggml_cuda_set_device(g_main_device); CUDA_CHECK(cudaDeviceSynchronize()); } } @@ -8260,7 +8424,7 @@ static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tens const int64_t ne12 = src1->ne[2]; - CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + ggml_cuda_set_device(g_main_device); cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; @@ -8292,7 +8456,7 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor const int64_t ne12 = src1->ne[2]; - CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + ggml_cuda_set_device(g_main_device); cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; @@ -8329,9 +8493,9 @@ static __global__ void k_compute_batched_ptrs( int64_t i03 = i13 / r3; int64_t i02 = i12 / r2; - ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03; - ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2; - ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3; + ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03; + ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13; + ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3; } static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -8340,37 +8504,19 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); GGML_ASSERT(src0->type == GGML_TYPE_F16); - GGML_ASSERT(src1->type == GGML_TYPE_F32); - const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00); - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; + GGML_TENSOR_BINARY_OP_LOCALS - const int64_t nb01 = src0->nb[1]; - const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02); - const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03); + const int64_t ne_dst = ggml_nelements(dst); - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const int64_t nb11 = src1->nb[1]; - const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12); - const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13); - - const int64_t ne1 = ggml_nelements(src1); - const int64_t ne = ggml_nelements(dst); - - CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + ggml_cuda_set_device(g_main_device); cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream)); ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; void * src0_ddq = src0_extra->data_device[g_main_device]; - half * src0_as_f16 = (half *) src0_ddq; + half * src0_f16 = (half *) src0_ddq; ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; @@ -8379,17 +8525,18 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; // convert src1 to fp16 - const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); - GGML_ASSERT(to_fp16_cuda != nullptr); + cuda_pool_alloc src1_f16_alloc; + if (src1->type != GGML_TYPE_F16) { + const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); + const int64_t ne_src1 = ggml_nelements(src1); + src1_f16_alloc.alloc(ne_src1); + GGML_ASSERT(to_fp16_cuda != nullptr); + to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream); + } + half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get(); - size_t src1_as = 0; - half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as); - to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream); - - size_t dst_as = 0; - - half * dst_f16 = nullptr; - char * dst_t = nullptr; + cuda_pool_alloc dst_f16; + char * dst_t; cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F; cudaDataType_t cu_data_type = CUDA_R_16F; @@ -8408,8 +8555,7 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const const void * beta = &beta_f16; if (dst->op_params[0] == GGML_PREC_DEFAULT) { - dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as); - dst_t = (char *) dst_f16; + dst_t = (char *) dst_f16.alloc(ne_dst); nbd2 /= sizeof(float) / sizeof(half); nbd3 /= sizeof(float) / sizeof(half); @@ -8456,9 +8602,9 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const CUBLAS_CHECK( cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, - alpha, (const char *) src0_as_f16, CUDA_R_16F, nb01/sizeof(half), src0->nb[2]/sizeof(half), // strideA - (const char *) src1_as_f16, CUDA_R_16F, nb11/sizeof(float), src1->nb[2]/sizeof(float), // strideB - beta, ( char *) dst_t, cu_data_type, ne01, dst->nb[2]/sizeof(float), // strideC + alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA + (const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB + beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC ne12*ne13, cu_compute_type, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); @@ -8466,23 +8612,18 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const // use cublasGemmBatchedEx const int ne23 = ne12*ne13; - const void ** ptrs_src = nullptr; - void ** ptrs_dst = nullptr; - - size_t ptrs_src_s = 0; - size_t ptrs_dst_s = 0; - - ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s); - ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s); + cuda_pool_alloc ptrs_src(2*ne23); + cuda_pool_alloc< void *> ptrs_dst(1*ne23); dim3 block_dims(ne13, ne12); k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>( - src0_as_f16, src1_as_f16, dst_t, - ptrs_src, ptrs_dst, + src0_f16, src1_f16, dst_t, + ptrs_src.get(), ptrs_dst.get(), ne12, ne13, ne23, nb02, nb03, - nb12, nb13, + src1->type == GGML_TYPE_F16 ? nb12 : nb12/2, + src1->type == GGML_TYPE_F16 ? nb13 : nb13/2, nbd2, nbd3, r2, r3); CUDA_CHECK(cudaGetLastError()); @@ -8490,30 +8631,19 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const CUBLAS_CHECK( cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, - alpha, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, nb01/sizeof(half), - (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, nb11/sizeof(float), - beta, ( void **) (ptrs_dst + 0*ne23), cu_data_type, ne01, + alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00, + (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10, + beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01, ne23, cu_compute_type, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); - - if (ptrs_src_s != 0) { - ggml_cuda_pool_free(ptrs_src, ptrs_src_s); - } - if (ptrs_dst_s != 0) { - ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s); - } } #endif if (dst->op_params[0] == GGML_PREC_DEFAULT) { const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); - to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream); - - ggml_cuda_pool_free(dst_f16, dst_as); + to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream); } - - ggml_cuda_pool_free(src1_as_f16, src1_as); } static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -8525,9 +8655,9 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1 const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT; int64_t min_compute_capability = INT_MAX; - for (int64_t id = 0; id < g_device_count; ++id) { - if (min_compute_capability > g_compute_capabilities[id] && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) { - min_compute_capability = g_compute_capabilities[id]; + for (int id = 0; id < g_device_count; ++id) { + if (min_compute_capability > g_device_caps[id].cc && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) { + min_compute_capability = g_device_caps[id].cc; } } @@ -8551,13 +8681,13 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1 } else if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) { // KQV single-batch ggml_cuda_mul_mat_vec_nc(src0, src1, dst); - } else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) { + } else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) { // KQ + KQV multi-batch ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst); } else if (src0->type == GGML_TYPE_F32) { ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false); } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) { - if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) { + if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->type == GGML_TYPE_F32) { #ifdef GGML_CUDA_FORCE_DMMV const bool use_mul_mat_vec_q = false; #else @@ -8668,7 +8798,7 @@ static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) { const int64_t ne1 = ggml_nelements(src1); const int64_t ne = ggml_nelements(dst); - CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + ggml_cuda_set_device(g_main_device); cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream)); @@ -8786,7 +8916,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s std::vector ids_host(ggml_nbytes(ids)); - const cudaStream_t stream = g_cudaStreams[g_main_device][0]; + cudaStream_t stream = g_cudaStreams[g_main_device][0]; if (ids->backend == GGML_BACKEND_GPU) { const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device]; @@ -8840,12 +8970,11 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row); } } else { - size_t as_src1, as_dst; - char * src1_contiguous = (char *) ggml_cuda_pool_malloc(sizeof(float)*ggml_nelements(src1), &as_src1); - char * dst_contiguous = (char *) ggml_cuda_pool_malloc(sizeof(float)*ggml_nelements(dst), &as_dst); + cuda_pool_alloc src1_contiguous(sizeof(float)*ggml_nelements(src1)); + cuda_pool_alloc dst_contiguous(sizeof(float)*ggml_nelements(dst)); - src1_row_extra.data_device[g_main_device] = src1_contiguous; - dst_row_extra.data_device[g_main_device] = dst_contiguous; + src1_row_extra.data_device[g_main_device] = src1_contiguous.get(); + dst_row_extra.data_device[g_main_device] = dst_contiguous.get(); const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_CPU ? cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice; @@ -8865,7 +8994,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s GGML_ASSERT(row_id >= 0 && row_id < n_as); - CUDA_CHECK(cudaMemcpyAsync(src1_contiguous + num_src1_rows*nb11, src1_original + i01*nb11, + CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11, nb11, src1_kind, stream)); num_src1_rows++; } @@ -8897,14 +9026,11 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s GGML_ASSERT(row_id >= 0 && row_id < n_as); - CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous + num_src1_rows*nb1, + CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1, nb1, dst_kind, stream)); num_src1_rows++; } } - - ggml_cuda_pool_free(src1_contiguous, as_src1); - ggml_cuda_pool_free(dst_contiguous, as_dst); } if (dst->backend == GGML_BACKEND_CPU) { @@ -8946,7 +9072,7 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg const int64_t nb11 = src1->nb[1]; const int64_t nb12 = src1->nb[2]; - CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + ggml_cuda_set_device(g_main_device); cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; const ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; @@ -9036,7 +9162,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu; memset(extra, 0, sizeof(*extra)); - for (int64_t id = 0; id < g_device_count; ++id) { + for (int id = 0; id < g_device_count; ++id) { if (backend == GGML_BACKEND_GPU && id != g_main_device) { continue; } @@ -9107,15 +9233,14 @@ void ggml_cuda_free_data(struct ggml_tensor * tensor) { ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; - for (int64_t id = 0; id < g_device_count; ++id) { + for (int id = 0; id < g_device_count; ++id) { + ggml_cuda_set_device(id); if (extra->data_device[id] != nullptr) { - CUDA_CHECK(ggml_cuda_set_device(id)); CUDA_CHECK(cudaFree(extra->data_device[id])); } for (int64_t is = 0; is < MAX_STREAMS; ++is) { if (extra->events[id][is] != nullptr) { - CUDA_CHECK(ggml_cuda_set_device(id)); CUDA_CHECK(cudaEventDestroy(extra->events[id][is])); } } @@ -9169,7 +9294,7 @@ static void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scra force_inplace; const size_t size = ggml_nbytes(tensor); - CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + ggml_cuda_set_device(g_main_device); if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) { ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra; char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; @@ -9246,7 +9371,7 @@ void ggml_cuda_copy_to_device(struct ggml_tensor * tensor) { GGML_ASSERT(ggml_is_contiguous(tensor)); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; - CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + ggml_cuda_set_device(g_main_device); CUDA_CHECK(cudaMemcpy(extra->data_device[g_main_device], tensor->data, ggml_nbytes(tensor), cudaMemcpyHostToDevice)); } @@ -9670,12 +9795,16 @@ ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) { // host buffer type static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { - CUDA_CHECK(cudaFreeHost(buffer->context)); + ggml_cuda_host_free(buffer->context); } static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { - void * ptr; - CUDA_CHECK(cudaMallocHost(&ptr, size)); + void * ptr = ggml_cuda_host_malloc(size); + + if (ptr == nullptr) { + // fallback to cpu buffer + return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size); + } // FIXME: this is a hack to avoid having to implement a new buffer type ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size); diff --git a/ggml-quants.c b/ggml-quants.c index a15a240..05ef8f9 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -407,6 +407,18 @@ inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) { #define ggml_vld1q_s8_x4 vld1q_s8_x4 #endif + +#if !defined(__ARM_FEATURE_DOTPROD) + +inline static int32x4_t vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) { + const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b)); + const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b)); + + return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1))); +} + +#endif + #endif #if defined(__ARM_NEON) || defined(__wasm_simd128__) @@ -2468,32 +2480,12 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); -#if defined(__ARM_FEATURE_DOTPROD) // dot product into int32x4_t const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h); const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h); sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); -#else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l)); - const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h)); - const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h)); - - const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l)); - const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l)); - const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h)); - const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h)); - - const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); - const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); - const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); - const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); - - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); -#endif } *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); @@ -2776,32 +2768,12 @@ void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restri const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); -#if defined(__ARM_FEATURE_DOTPROD) // dot product into int32x4_t const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h); const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h); sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d); -#else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l)); - const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h)); - const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h)); - - const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l)); - const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l)); - const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h)); - const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h)); - - const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); - const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); - const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); - const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); - - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d); -#endif } *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs; @@ -2963,32 +2935,12 @@ void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restri const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); -#if defined(__ARM_FEATURE_DOTPROD) sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l), vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l), vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); -#else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l)); - const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h)); - const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h)); - - const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l)); - const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l)); - const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h)); - const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h)); - - const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); - const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); - const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); - const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); - - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); -#endif } *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); @@ -3275,32 +3227,12 @@ void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restri const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); -#if defined(__ARM_FEATURE_DOTPROD) sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l), vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l), vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d); -#else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l)); - const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h)); - const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h)); - - const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l)); - const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l)); - const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h)); - const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h)); - - const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); - const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); - const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); - const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); - - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d); -#endif } *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1; @@ -3550,7 +3482,6 @@ void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restri const int8x16_t y1_0 = vld1q_s8(y1->qs); const int8x16_t y1_1 = vld1q_s8(y1->qs + 16); -#if defined(__ARM_FEATURE_DOTPROD) sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( vdotq_s32(vdupq_n_s32(0), x0_0, y0_0), vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); @@ -3558,26 +3489,6 @@ void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restri sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( vdotq_s32(vdupq_n_s32(0), x1_0, y1_0), vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); - -#else - const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0)); - const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0)); - const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1)); - const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1)); - - const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0)); - const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0)); - const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1)); - const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1)); - - const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1)); - const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3)); - const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1)); - const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3)); - - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); -#endif } *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); @@ -3650,12 +3561,10 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri const int nb = n / QK_K; #ifdef __ARM_NEON - const uint8x16_t m3 = vdupq_n_u8(0x3); const uint8x16_t m4 = vdupq_n_u8(0xF); -#if defined(__ARM_FEATURE_DOTPROD) - const int32x4_t vzero = vdupq_n_s32(0); -#endif + + const int32x4_t vzero = vdupq_n_s32(0); ggml_int8x16x2_t q2bytes; uint8_t aux[16]; @@ -3663,7 +3572,6 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri float sum = 0; for (int i = 0; i < nb; ++i) { - const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); @@ -3689,20 +3597,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri // We use this macro instead of a function call because for some reason // the code runs 2-3% slower, even if the function is declared inline -#if defined(__ARM_FEATURE_DOTPROD) #define MULTIPLY_ACCUM_WITH_SCALE(index)\ isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\ isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)]; -#else -#define MULTIPLY_ACCUM_WITH_SCALE(index)\ - {\ - const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\ - vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\ - const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\ - vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\ - isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\ - } -#endif #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\ q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\ @@ -3710,26 +3607,23 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\ MULTIPLY_ACCUM_WITH_SCALE((index)); - for (int j = 0; j < QK_K/128; ++j) { - const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32; ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32; q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3)); q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3)); + MULTIPLY_ACCUM_WITH_SCALE(0); SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2); - SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4); - SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6); is += 8; } - sum += d * isum; + sum += d * isum; } *s = sum; @@ -4043,11 +3937,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri const int nb = n / QK_K; #ifdef __ARM_NEON - const uint8x16_t m3 = vdupq_n_u8(0x3); -#if defined(__ARM_FEATURE_DOTPROD) - const int32x4_t vzero = vdupq_n_s32(0); -#endif + + const int32x4_t vzero = vdupq_n_s32(0); ggml_int8x16x4_t q2bytes; @@ -4081,28 +3973,12 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3)); q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3)); -#if defined(__ARM_FEATURE_DOTPROD) isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0]; isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1]; isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2]; isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3]; -#else - const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])), - vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0]))); - const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])), - vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1]))); - isum1 += vaddvq_s16(p1) * scales[0]; - isum2 += vaddvq_s16(p2) * scales[1]; - const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])), - vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2]))); - const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])), - vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3]))); - isum1 += vaddvq_s16(p3) * scales[2]; - isum2 += vaddvq_s16(p4) * scales[3]; -#endif sum += d * (isum1 + isum2); - } *s = sum; @@ -4328,9 +4204,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri uint32_t utmp[4]; const uint8x16_t m3b = vdupq_n_u8(0x3); -#ifdef __ARM_FEATURE_DOTPROD const int32x4_t vzero = vdupq_n_s32(0); -#endif const uint8x16_t m0 = vdupq_n_u8(1); const uint8x16_t m1 = vshlq_n_u8(m0, 1); @@ -4382,22 +4256,11 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2])); q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3])); -#if defined(__ARM_FEATURE_DOTPROD) isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3]; -#else - int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])), - vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0]))); - int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])), - vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1]))); - int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])), - vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2]))); - int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])), - vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3]))); - isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3]; -#endif + scale += 4; q3h.val[0] = vbicq_u8(m2, qhbits.val[0]); @@ -4410,22 +4273,11 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2])); q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3])); -#if defined(__ARM_FEATURE_DOTPROD) isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3]; -#else - p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])), - vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0]))); - p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])), - vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1]))); - p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])), - vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2]))); - p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])), - vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3]))); - isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3]; -#endif + scale += 4; if (j == 0) { @@ -4864,10 +4716,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri const int nb = n / QK_K; #ifdef __ARM_NEON - -#ifdef __ARM_FEATURE_DOTPROD - const int32x4_t vzero = vdupq_n_s32(0); -#endif + const int32x4_t vzero = vdupq_n_s32(0); const uint8x16_t m3b = vdupq_n_u8(0x3); const uint8x16_t mh = vdupq_n_u8(4); @@ -4908,22 +4757,10 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2])); q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3])); -#if defined(__ARM_FEATURE_DOTPROD) isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3]; -#else - const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])), - vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0]))); - const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])), - vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1]))); - const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])), - vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2]))); - const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])), - vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3]))); - isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3]; -#endif sum += d * isum; @@ -5228,11 +5065,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri uint32_t utmp[4]; #ifdef __ARM_NEON - const uint8x16_t m4b = vdupq_n_u8(0xf); -#ifdef __ARM_FEATURE_DOTPROD const int32x4_t mzero = vdupq_n_s32(0); -#endif ggml_int8x16x2_t q4bytes; ggml_int8x16x2_t q8bytes; @@ -5269,10 +5103,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri int32_t sumi2 = 0; for (int j = 0; j < QK_K/64; ++j) { - const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32; -#ifdef __ARM_FEATURE_DOTPROD q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32; q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); @@ -5287,26 +5119,6 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); sumi2 += vaddvq_s32(p2) * scales[2*j+1]; -#else - q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32; - q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); - q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); - const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])), - vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0]))); - const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])), - vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1]))); - sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0]; - - q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32; - q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); - q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); - const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])), - vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0]))); - const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])), - vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1]))); - sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1]; - -#endif } sumf += d * (sumi1 + sumi2); @@ -5603,12 +5415,9 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri const int nb = n / QK_K; #ifdef __ARM_NEON - const uint8x16_t m4b = vdupq_n_u8(0xf); -#ifdef __ARM_FEATURE_DOTPROD const int32x4_t mzero = vdupq_n_s32(0); -#endif float sumf = 0; @@ -5636,7 +5445,6 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); -#ifdef __ARM_FEATURE_DOTPROD q8bytes = ggml_vld1q_s8_x4(q8); q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); @@ -5650,27 +5458,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]); const int32_t sumi2 = vaddvq_s32(p2) * scales[1]; -#else - q8bytes = ggml_vld1q_s8_x4(q8); - q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); - q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); - const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])), - vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0]))); - const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])), - vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1]))); - int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0]; - - q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); - q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); - const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])), - vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2]))); - const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])), - vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3]))); - int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1]; - -#endif sumf += d * (sumi1 + sumi2); - } *s = sumf - sum_mins; @@ -5875,15 +5663,11 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri uint32_t utmp[4]; - #ifdef __ARM_NEON - const uint8x16_t m4b = vdupq_n_u8(0xf); const uint8x16_t mone = vdupq_n_u8(1); const uint8x16_t mtwo = vdupq_n_u8(2); -#if defined(__ARM_FEATURE_DOTPROD) const int32x4_t mzero = vdupq_n_s32(0); -#endif ggml_int8x16x4_t q5bytes; @@ -5938,28 +5722,11 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2])); q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3])); -#if defined(__ARM_FEATURE_DOTPROD) - sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++; sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++; -#else - - const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])), - vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0]))); - const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])), - vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1]))); - sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++; - - const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])), - vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2]))); - const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])), - vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3]))); - sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++; -#endif } sumf += d * sumi - dmin * sumi_mins; - } *s = sumf; @@ -6311,12 +6078,9 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri const int nb = n / QK_K; #ifdef __ARM_NEON - const uint8x16_t m4b = vdupq_n_u8(0xf); const uint8x16_t mh = vdupq_n_u8(16); -#if defined(__ARM_FEATURE_DOTPROD) const int32x4_t mzero = vdupq_n_s32(0); -#endif ggml_int8x16x4_t q5bytes; ggml_uint8x16x4_t q5h; @@ -6348,32 +6112,12 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2])); q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3])); -#if defined(__ARM_FEATURE_DOTPROD) - int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0])); int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1])); int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2])); int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3])); sumf += d * (sumi1 + sumi2 + sumi3 + sumi4); - -#else - - const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])), - vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0]))); - const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])), - vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1]))); - int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1); - - const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])), - vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2]))); - const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])), - vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3]))); - sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3); - - sumf += d*sumi; -#endif - } *s = sumf; @@ -6600,13 +6344,10 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri const int nb = n / QK_K; #ifdef __ARM_NEON - float sum = 0; const uint8x16_t m4b = vdupq_n_u8(0xF); -#if defined(__ARM_FEATURE_DOTPROD) const int32x4_t vzero = vdupq_n_s32(0); -#endif //const int8x16_t m32s = vdupq_n_s8(32); const uint8x16_t mone = vdupq_n_u8(3); @@ -6658,31 +6399,13 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])); q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])); -#if defined(__ARM_FEATURE_DOTPROD) - isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; + scale += 4; -#else - - int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])), - vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0]))); - int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])), - vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1]))); - isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1]; - scale += 2; - - int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])), - vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2]))); - int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])), - vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3]))); - isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1]; - scale += 2; -#endif - q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64; shifted = vshrq_n_u8(qhbits.val[0], 4); @@ -6703,34 +6426,11 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])); q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])); -#if defined(__ARM_FEATURE_DOTPROD) - isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; scale += 4; - - //for (int l = 0; l < 4; ++l) { - // const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]); - // isum += vaddvq_s32(p) * *scale++; - //} -#else - p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])), - vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0]))); - p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])), - vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1]))); - isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1]; - scale += 2; - - p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])), - vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2]))); - p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])), - vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3]))); - isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1]; - scale += 2; -#endif - } //sum += isum * d_all * y[i].d; sum += d_all * y[i].d * (isum - 32 * isum_mins); @@ -7076,14 +6776,11 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri const int nb = n / QK_K; #ifdef __ARM_NEON - float sum = 0; const uint8x16_t m4b = vdupq_n_u8(0xF); const int8x16_t m32s = vdupq_n_s8(32); -#if defined(__ARM_FEATURE_DOTPROD) const int32x4_t vzero = vdupq_n_s32(0); -#endif const uint8x16_t mone = vdupq_n_u8(3); @@ -7119,26 +6816,10 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s); q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s); -#if defined(__ARM_FEATURE_DOTPROD) - isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; -#else - - int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])), - vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0]))); - int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])), - vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1]))); - isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1]; - - int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])), - vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2]))); - int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])), - vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3]))); - isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3]; -#endif sum += isum * d_all * y[i].d; diff --git a/ggml.c b/ggml.c index 3656422..a9e1ea9 100644 --- a/ggml.c +++ b/ggml.c @@ -4041,7 +4041,6 @@ static struct ggml_tensor * ggml_group_norm_impl( result->op = GGML_OP_GROUP_NORM; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; - result->src[1] = NULL; // TODO: maybe store epsilon here? return result; } @@ -5541,7 +5540,6 @@ static struct ggml_tensor * ggml_upscale_impl( result->op_params[0] = scale_factor; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; - result->src[1] = NULL; return result; } @@ -5846,7 +5844,6 @@ struct ggml_tensor * ggml_get_rel_pos( result->op = GGML_OP_GET_REL_POS; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; - result->src[1] = NULL; return result; } @@ -9690,7 +9687,7 @@ static void ggml_compute_forward_mul_mat( const size_t row_size = ggml_row_size(vec_dot_type, ne10); assert(params->wsize >= ne11*ne12*ne13*row_size); - assert(src1->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); for (int64_t i13 = 0; i13 < ne13; ++i13) { for (int64_t i12 = 0; i12 < ne12; ++i12) { @@ -17456,9 +17453,9 @@ static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g } // -// ADAM +// Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf // -// ref: https://arxiv.org/pdf/1412.6980.pdf +// (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf) // static enum ggml_opt_result ggml_opt_adam( @@ -19351,7 +19348,7 @@ void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) { data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data; } gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n); - free(data); + free((void *)data); } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) { GGML_ASSERT(false && "nested arrays not supported"); } else { diff --git a/ggml.h b/ggml.h index 338f355..67d6bc4 100644 --- a/ggml.h +++ b/ggml.h @@ -255,6 +255,8 @@ #define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached") #elif defined(__GNUC__) #define GGML_UNREACHABLE() __builtin_unreachable() +#elif defined(_MSC_VER) +#define GGML_UNREACHABLE() __assume(0) #else #define GGML_UNREACHABLE() ((void) 0) #endif