Use Accelerate framework on Apple silicon
Huge performance improvement in the Encode (almost x2 on MacBook M1 Pro) Also various extra optimizations: - Multi-threaded NORM operator - Faster GELU via F16 cast
This commit is contained in:
parent
130b5c02d6
commit
72d967bce4
9
Makefile
9
Makefile
@ -8,6 +8,7 @@ UNAME_M := $(shell uname -m)
|
|||||||
|
|
||||||
CFLAGS = -O3 -std=c11
|
CFLAGS = -O3 -std=c11
|
||||||
CXXFLAGS = -O3 -std=c++11
|
CXXFLAGS = -O3 -std=c++11
|
||||||
|
LDFLAGS =
|
||||||
|
|
||||||
CFLAGS += -Wall -Wextra -Wno-unused-parameter -Wno-unused-function
|
CFLAGS += -Wall -Wextra -Wno-unused-parameter -Wno-unused-function
|
||||||
CXXFLAGS += -Wall -Wextra -Wno-unused-parameter -Wno-unused-function
|
CXXFLAGS += -Wall -Wextra -Wno-unused-parameter -Wno-unused-function
|
||||||
@ -37,7 +38,11 @@ ifeq ($(UNAME_M),amd64)
|
|||||||
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
||||||
endif
|
endif
|
||||||
ifneq ($(filter arm%,$(UNAME_M)),)
|
ifneq ($(filter arm%,$(UNAME_M)),)
|
||||||
# Mac M1
|
# Mac M1 - include Accelerate framework
|
||||||
|
ifeq ($(UNAME_S),Darwin)
|
||||||
|
CFLAGS += -DGGML_USE_ACCELERATE
|
||||||
|
LDFLAGS += -framework Accelerate
|
||||||
|
endif
|
||||||
endif
|
endif
|
||||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||||
endif
|
endif
|
||||||
@ -59,7 +64,7 @@ endif
|
|||||||
#
|
#
|
||||||
|
|
||||||
main: main.cpp ggml.o whisper.o
|
main: main.cpp ggml.o whisper.o
|
||||||
$(CXX) $(CXXFLAGS) main.cpp whisper.o ggml.o -o main
|
$(CXX) $(CXXFLAGS) main.cpp whisper.o ggml.o -o main $(LDFLAGS)
|
||||||
./main -h
|
./main -h
|
||||||
|
|
||||||
ggml.o: ggml.c ggml.h
|
ggml.o: ggml.c ggml.h
|
||||||
|
20
README.md
20
README.md
@ -6,7 +6,8 @@
|
|||||||
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
||||||
|
|
||||||
- Plain C/C++ implementation without dependencies
|
- Plain C/C++ implementation without dependencies
|
||||||
- ARM_NEON and AVX intrinsics support
|
- Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
|
||||||
|
- AVX intrinsics support for x86 architectures
|
||||||
- Mixed F16 / F32 precision
|
- Mixed F16 / F32 precision
|
||||||
- Low memory usage (Flash Attention + Flash Forward)
|
- Low memory usage (Flash Attention + Flash Forward)
|
||||||
- Zero memory allocations at runtime
|
- Zero memory allocations at runtime
|
||||||
@ -224,7 +225,7 @@ https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a
|
|||||||
The `stream` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
The `stream` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# Install SDL2 on Linux
|
# Install SDL2 on Linux
|
||||||
sudo apt-get install libsdl2-dev
|
sudo apt-get install libsdl2-dev
|
||||||
|
|
||||||
# Install SDL2 on Mac OS
|
# Install SDL2 on Mac OS
|
||||||
@ -240,6 +241,10 @@ make stream
|
|||||||
- Simple usage is demonstrated in [main.cpp](main.cpp)
|
- Simple usage is demonstrated in [main.cpp](main.cpp)
|
||||||
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](stream.cpp)
|
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](stream.cpp)
|
||||||
|
|
||||||
|
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD
|
||||||
|
instrisics or CBLAS Accelerate framwork routines are used. The latter are especially effective for bigger sizes since
|
||||||
|
the framwork utilizes the special-purpose AMX coprocessor available in modern Apple products.
|
||||||
|
|
||||||
## Limitations
|
## Limitations
|
||||||
|
|
||||||
- Very basic greedy sampling scheme - always pick up the top token. You can implement your own strategy
|
- Very basic greedy sampling scheme - always pick up the top token. You can implement your own strategy
|
||||||
@ -250,11 +255,12 @@ make stream
|
|||||||
|
|
||||||
| Model | Disk | Mem |
|
| Model | Disk | Mem |
|
||||||
| --- | --- | --- |
|
| --- | --- | --- |
|
||||||
| tiny | 75 MB | ~240 MB |
|
| tiny | 75 MB | ~280 MB |
|
||||||
| base | 142 MB | ~380 MB |
|
| base | 142 MB | ~430 MB |
|
||||||
| small | 466 MB | ~970 MB |
|
| small | 466 MB | ~1.0 GB |
|
||||||
| medium | 1.5 GB | ~2.5 GB |
|
| medium | 1.5 GB | ~2.6 GB |
|
||||||
| large | 2.9 GB | ~4.6 GB |
|
| large | 2.9 GB | ~4.7 GB |
|
||||||
|
|
||||||
|
|
||||||
## ggml format
|
## ggml format
|
||||||
|
|
||||||
|
295
ggml.c
295
ggml.c
@ -716,12 +716,6 @@ inline static float ggml_gelu_f32(float x) {
|
|||||||
return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
|
return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
|
||||||
}
|
}
|
||||||
|
|
||||||
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
|
||||||
for (int i = 0; i < n; ++i) {
|
|
||||||
y[i] = ggml_gelu_f32(x[i]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||||
const uint16_t * i16 = (const uint16_t *) x;
|
const uint16_t * i16 = (const uint16_t *) x;
|
||||||
for (int i = 0; i < n; ++i) {
|
for (int i = 0; i < n; ++i) {
|
||||||
@ -729,6 +723,21 @@ inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
||||||
|
uint16_t t;
|
||||||
|
for (int i = 0; i < n; ++i) {
|
||||||
|
ggml_fp16_t fp16 = ggml_fp32_to_fp16(x[i]);
|
||||||
|
memcpy(&t, &fp16, sizeof(uint16_t));
|
||||||
|
y[i] = table_gelu_f16[t];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
||||||
|
// for (int i = 0; i < n; ++i) {
|
||||||
|
// y[i] = ggml_gelu_f32(x[i]);
|
||||||
|
// }
|
||||||
|
//}
|
||||||
|
|
||||||
inline static void ggml_vec_sum_f32 (const int n, float * s, const float * x) { ggml_float sum = 0.0; for (int i = 0; i < n; ++i) sum += x[i]; *s += sum; }
|
inline static void ggml_vec_sum_f32 (const int n, float * s, const float * x) { ggml_float sum = 0.0; for (int i = 0; i < n; ++i) sum += x[i]; *s += sum; }
|
||||||
inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
|
inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
|
||||||
|
|
||||||
@ -2867,13 +2876,15 @@ void ggml_compute_forward_add_f32(
|
|||||||
const struct ggml_tensor * src0,
|
const struct ggml_tensor * src0,
|
||||||
const struct ggml_tensor * src1,
|
const struct ggml_tensor * src1,
|
||||||
struct ggml_tensor * dst) {
|
struct ggml_tensor * dst) {
|
||||||
GGML_ASSERT(params->ith == 0);
|
|
||||||
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
||||||
|
|
||||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const int ith = params->ith;
|
||||||
|
const int nth = params->nth;
|
||||||
|
|
||||||
const int n = ggml_nrows(src0);
|
const int n = ggml_nrows(src0);
|
||||||
const int nc = src0->ne[0];
|
const int nc = src0->ne[0];
|
||||||
|
|
||||||
@ -2890,7 +2901,7 @@ void ggml_compute_forward_add_f32(
|
|||||||
GGML_ASSERT(nb00 == sizeof(float));
|
GGML_ASSERT(nb00 == sizeof(float));
|
||||||
|
|
||||||
if (nb10 == sizeof(float)) {
|
if (nb10 == sizeof(float)) {
|
||||||
for (int j = 0; j < n; j++) {
|
for (int j = ith; j < n; j += nth) {
|
||||||
ggml_vec_add_f32(nc,
|
ggml_vec_add_f32(nc,
|
||||||
(float *) ((char *) dst->data + j*nb1),
|
(float *) ((char *) dst->data + j*nb1),
|
||||||
(float *) ((char *) src0->data + j*nb01),
|
(float *) ((char *) src0->data + j*nb01),
|
||||||
@ -2898,7 +2909,7 @@ void ggml_compute_forward_add_f32(
|
|||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
// src1 is not contiguous
|
// src1 is not contiguous
|
||||||
for (int j = 0; j < n; j++) {
|
for (int j = ith; j < n; j += nth) {
|
||||||
float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
|
float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
|
||||||
float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
|
float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
|
||||||
for (int i = 0; i < nc; i++) {
|
for (int i = 0; i < nc; i++) {
|
||||||
@ -3669,14 +3680,16 @@ void ggml_compute_forward_norm_f32(
|
|||||||
const struct ggml_compute_params * params,
|
const struct ggml_compute_params * params,
|
||||||
const struct ggml_tensor * src0,
|
const struct ggml_tensor * src0,
|
||||||
struct ggml_tensor * dst) {
|
struct ggml_tensor * dst) {
|
||||||
assert(params->ith == 0);
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||||||
assert(ggml_are_same_shape(src0, dst));
|
|
||||||
|
|
||||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
assert(src0->nb[0] == sizeof(float));
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||||
|
|
||||||
|
const int ith = params->ith;
|
||||||
|
const int nth = params->nth;
|
||||||
|
|
||||||
const int ne00 = src0->ne[0];
|
const int ne00 = src0->ne[0];
|
||||||
const int ne01 = src0->ne[1];
|
const int ne01 = src0->ne[1];
|
||||||
@ -3696,7 +3709,7 @@ void ggml_compute_forward_norm_f32(
|
|||||||
// TODO: optimize
|
// TODO: optimize
|
||||||
for (int i03 = 0; i03 < ne03; i03++) {
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||||||
for (int i02 = 0; i02 < ne02; i02++) {
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||||||
for (int i01 = 0; i01 < ne01; i01++) {
|
for (int i01 = ith; i01 < ne01; i01 += nth) {
|
||||||
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||||||
|
|
||||||
ggml_float mean = 0.0;
|
ggml_float mean = 0.0;
|
||||||
@ -3745,6 +3758,28 @@ void ggml_compute_forward_norm(
|
|||||||
|
|
||||||
// ggml_compute_forward_mul_mat
|
// ggml_compute_forward_mul_mat
|
||||||
|
|
||||||
|
// helper function to determine if it is better to use BLAS or not
|
||||||
|
// for large matrices, BLAS is faster
|
||||||
|
bool ggml_compute_forward_mul_mat_use_blas(
|
||||||
|
const struct ggml_tensor * src0,
|
||||||
|
const struct ggml_tensor * src1,
|
||||||
|
struct ggml_tensor * dst) {
|
||||||
|
UNUSED(src0);
|
||||||
|
|
||||||
|
const int ne10 = src1->ne[0];
|
||||||
|
|
||||||
|
const int ne0 = dst->ne[0];
|
||||||
|
const int ne1 = dst->ne[1];
|
||||||
|
|
||||||
|
// TODO: find the optimal values for these
|
||||||
|
if (ggml_is_contiguous(src1) && ne0 >= 32 && ne1 >= 32 && ne10 >= 32) {
|
||||||
|
//printf("BLAS: %d %d %d\n", ne0, ne1, ne10);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
void ggml_compute_forward_mul_mat_f32(
|
void ggml_compute_forward_mul_mat_f32(
|
||||||
const struct ggml_compute_params * params,
|
const struct ggml_compute_params * params,
|
||||||
const struct ggml_tensor * src0,
|
const struct ggml_tensor * src0,
|
||||||
@ -3812,6 +3847,47 @@ void ggml_compute_forward_mul_mat_f32(
|
|||||||
// nb00 < nb01 - src0 is transposed
|
// nb00 < nb01 - src0 is transposed
|
||||||
// compute by src0 columns
|
// compute by src0 columns
|
||||||
|
|
||||||
|
//#ifdef GGML_USE_ACCELERATE
|
||||||
|
// if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
|
||||||
|
// GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
|
// GGML_ASSERT(nb10 == sizeof(float));
|
||||||
|
//
|
||||||
|
// if (params->ith != 0) return;
|
||||||
|
//
|
||||||
|
// if (params->type == GGML_TASK_INIT) {
|
||||||
|
// return;
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// if (params->type == GGML_TASK_FINALIZE) {
|
||||||
|
// return;
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// float * const wdata = params->wdata;
|
||||||
|
//
|
||||||
|
// for (int i03 = 0; i03 < ne03; i03++) {
|
||||||
|
// for (int i02 = 0; i02 < ne02; i02++) {
|
||||||
|
// const float * x = (float *) (src0->data);
|
||||||
|
// const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
|
||||||
|
//
|
||||||
|
// float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||||
|
//
|
||||||
|
// // zT = y * xT
|
||||||
|
// {
|
||||||
|
// cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||||
|
// ne11, ne01, ne10,
|
||||||
|
// 1.0f, y, ne10,
|
||||||
|
// x, ne10,
|
||||||
|
// 0.0f, d, ne01);
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
|
||||||
|
//
|
||||||
|
// return;
|
||||||
|
// }
|
||||||
|
//#endif
|
||||||
|
|
||||||
if (params->type == GGML_TASK_INIT) {
|
if (params->type == GGML_TASK_INIT) {
|
||||||
if (nb01 >= nb00) {
|
if (nb01 >= nb00) {
|
||||||
return;
|
return;
|
||||||
@ -3848,78 +3924,6 @@ void ggml_compute_forward_mul_mat_f32(
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
//#ifdef GGML_USE_ACCELERATE
|
|
||||||
// // try to use BLAS
|
|
||||||
//
|
|
||||||
// if (nb01 >= nb00 && ne0 > 1024 && ne1 > 1024) {
|
|
||||||
// if (params->ith != 0) return;
|
|
||||||
// printf("XXXXXXXX\n");
|
|
||||||
//
|
|
||||||
// GGML_ASSERT(ggml_is_contiguous(src0));
|
|
||||||
// GGML_ASSERT(ggml_is_contiguous(src1));
|
|
||||||
//
|
|
||||||
// printf("ne00 = %d, ne01 = %d, ne02 = %d, ne03 = %d\n", ne00, ne01, ne02, ne03);
|
|
||||||
// printf("ne10 = %d, ne11 = %d, ne12 = %d, ne13 = %d\n", ne10, ne11, ne12, ne13);
|
|
||||||
// printf("ne0 = %d, ne1 = %d, ne2 = %d, ne3 = %d\n", ne0, ne1, ne2, ne3);
|
|
||||||
//
|
|
||||||
// printf("nb00 = %d, nb01 = %d, nb02 = %d, nb03 = %d\n", nb00, nb01, nb02, nb03);
|
|
||||||
// printf("nb10 = %d, nb11 = %d, nb12 = %d, nb13 = %d\n", nb10, nb11, nb12, nb13);
|
|
||||||
// printf("nb0 = %d, nb1 = %d, nb2 = %d, nb3 = %d\n", nb0, nb1, nb2, nb3);
|
|
||||||
//
|
|
||||||
// float * const wdata = params->wdata;
|
|
||||||
//
|
|
||||||
// int64_t tsum = 0.0;
|
|
||||||
// for (int i03 = 0; i03 < ne03; i03++) {
|
|
||||||
// for (int i02 = 0; i02 < ne02; i02++) {
|
|
||||||
// const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
|
||||||
// const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
|
|
||||||
// float * z = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
|
||||||
//
|
|
||||||
// // transpose src1
|
|
||||||
// for (int j = 0; j < ne11; ++j) {
|
|
||||||
// for (int i = 0; i < ne10; ++i) {
|
|
||||||
// wdata[i*ne11 + j] = y[j*ne10 + i];
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// {
|
|
||||||
// const int64_t tt0 = ggml_time_us();
|
|
||||||
// cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
|
|
||||||
// 1500, 1500, 64,
|
|
||||||
// 1.0, x, 64,
|
|
||||||
// wdata, 1500,
|
|
||||||
// 0.0, z, 1500);
|
|
||||||
// const int64_t tt1 = ggml_time_us();
|
|
||||||
// tsum += tt1 - tt0;
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// // transpose z
|
|
||||||
// for (int j = 0; j < ne1; ++j) {
|
|
||||||
// for (int i = 0; i < ne0; ++i) {
|
|
||||||
// wdata[i*ne1 + j] = z[j*ne0 + i];
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// memcpy(z, wdata, ne0*ne1*sizeof(float));
|
|
||||||
//
|
|
||||||
// //cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
|
|
||||||
// // ne0, ne1, 64,
|
|
||||||
// // 1.0f,
|
|
||||||
// // x, ne00,
|
|
||||||
// // y, ne11,
|
|
||||||
// // 0.0f,
|
|
||||||
// // z, 1500);
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
// printf("time = %f ms\n", tsum/1000.0);
|
|
||||||
// return;
|
|
||||||
// } else {
|
|
||||||
// //cblas_sgemv(CblasRowMajor, CblasTrans, ne00, ne01, 1.0, src0->data, ne01, src1->data, 1, 0.0, dst->data, 1);
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
//#endif
|
|
||||||
|
|
||||||
|
|
||||||
if (nb01 >= nb00) {
|
if (nb01 >= nb00) {
|
||||||
// TODO: do not support transposed src1
|
// TODO: do not support transposed src1
|
||||||
assert(nb10 == sizeof(float));
|
assert(nb10 == sizeof(float));
|
||||||
@ -4064,24 +4068,24 @@ void ggml_compute_forward_mul_mat_f16_f32(
|
|||||||
const int ith = params->ith;
|
const int ith = params->ith;
|
||||||
const int nth = params->nth;
|
const int nth = params->nth;
|
||||||
|
|
||||||
assert(ne02 == ne12);
|
GGML_ASSERT(ne02 == ne12);
|
||||||
assert(ne03 == ne13);
|
GGML_ASSERT(ne03 == ne13);
|
||||||
assert(ne2 == ne12);
|
GGML_ASSERT(ne2 == ne12);
|
||||||
assert(ne3 == ne13);
|
GGML_ASSERT(ne3 == ne13);
|
||||||
|
|
||||||
// TODO: we don't support permuted src0
|
// TODO: we don't support permuted src0
|
||||||
assert(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
|
||||||
|
|
||||||
// dst cannot be transposed or permuted
|
// dst cannot be transposed or permuted
|
||||||
assert(nb0 == sizeof(float));
|
GGML_ASSERT(nb0 == sizeof(float));
|
||||||
assert(nb0 <= nb1);
|
GGML_ASSERT(nb0 <= nb1);
|
||||||
assert(nb1 <= nb2);
|
GGML_ASSERT(nb1 <= nb2);
|
||||||
assert(nb2 <= nb3);
|
GGML_ASSERT(nb2 <= nb3);
|
||||||
|
|
||||||
assert(ne0 == ne01);
|
GGML_ASSERT(ne0 == ne01);
|
||||||
assert(ne1 == ne11);
|
GGML_ASSERT(ne1 == ne11);
|
||||||
assert(ne2 == ne02);
|
GGML_ASSERT(ne2 == ne02);
|
||||||
assert(ne3 == ne03);
|
GGML_ASSERT(ne3 == ne03);
|
||||||
|
|
||||||
// nb01 >= nb00 - src0 is not transposed
|
// nb01 >= nb00 - src0 is not transposed
|
||||||
// compute by src0 rows
|
// compute by src0 rows
|
||||||
@ -4089,6 +4093,73 @@ void ggml_compute_forward_mul_mat_f16_f32(
|
|||||||
// nb00 < nb01 - src0 is transposed
|
// nb00 < nb01 - src0 is transposed
|
||||||
// compute by src0 columns
|
// compute by src0 columns
|
||||||
|
|
||||||
|
#ifdef GGML_USE_ACCELERATE
|
||||||
|
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
|
||||||
|
GGML_ASSERT(nb10 == sizeof(float));
|
||||||
|
|
||||||
|
if (params->ith != 0) return;
|
||||||
|
|
||||||
|
if (params->type == GGML_TASK_INIT) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params->type == GGML_TASK_FINALIZE) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
float * const wdata = params->wdata;
|
||||||
|
|
||||||
|
for (int i03 = 0; i03 < ne03; i03++) {
|
||||||
|
for (int i02 = 0; i02 < ne02; i02++) {
|
||||||
|
{
|
||||||
|
int id = 0;
|
||||||
|
for (int i01 = 0; i01 < ne01; ++i01) {
|
||||||
|
for (int i00 = 0; i00 < ne00; ++i00) {
|
||||||
|
wdata[id++] = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const float * x = wdata;
|
||||||
|
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
|
||||||
|
|
||||||
|
// float * z = wdata + ne00*ne01;
|
||||||
|
|
||||||
|
// z = x * yT
|
||||||
|
//{
|
||||||
|
// cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||||
|
// ne01, ne11, ne00,
|
||||||
|
// 1.0f, x, ne00,
|
||||||
|
// y, ne00,
|
||||||
|
// 0.0f, z, ne11);
|
||||||
|
//}
|
||||||
|
|
||||||
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||||
|
|
||||||
|
// transpose z
|
||||||
|
//for (int j = 0; j < ne11; ++j) {
|
||||||
|
// for (int i = 0; i < ne01; ++i) {
|
||||||
|
// d[j*ne01 + i] = z[i*ne11 + j];
|
||||||
|
// }
|
||||||
|
//}
|
||||||
|
|
||||||
|
// zT = y * xT
|
||||||
|
{
|
||||||
|
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||||
|
ne11, ne01, ne10,
|
||||||
|
1.0f, y, ne10,
|
||||||
|
x, ne10,
|
||||||
|
0.0f, d, ne01);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
if (params->type == GGML_TASK_INIT) {
|
if (params->type == GGML_TASK_INIT) {
|
||||||
if (nb01 >= nb00) {
|
if (nb01 >= nb00) {
|
||||||
ggml_fp16_t * const wdata = params->wdata;
|
ggml_fp16_t * const wdata = params->wdata;
|
||||||
@ -6534,7 +6605,13 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
|||||||
|
|
||||||
switch (node->op) {
|
switch (node->op) {
|
||||||
case GGML_OP_DUP:
|
case GGML_OP_DUP:
|
||||||
|
{
|
||||||
|
node->n_tasks = 1;
|
||||||
|
} break;
|
||||||
case GGML_OP_ADD:
|
case GGML_OP_ADD:
|
||||||
|
{
|
||||||
|
node->n_tasks = 1;
|
||||||
|
} break;
|
||||||
case GGML_OP_SUB:
|
case GGML_OP_SUB:
|
||||||
case GGML_OP_MUL:
|
case GGML_OP_MUL:
|
||||||
case GGML_OP_DIV:
|
case GGML_OP_DIV:
|
||||||
@ -6553,11 +6630,11 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
|||||||
} break;
|
} break;
|
||||||
case GGML_OP_GELU:
|
case GGML_OP_GELU:
|
||||||
{
|
{
|
||||||
node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
|
node->n_tasks = n_threads;
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_NORM:
|
case GGML_OP_NORM:
|
||||||
{
|
{
|
||||||
node->n_tasks = 1;
|
node->n_tasks = n_threads;
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_MUL_MAT:
|
case GGML_OP_MUL_MAT:
|
||||||
{
|
{
|
||||||
@ -6572,7 +6649,15 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
|||||||
} else {
|
} else {
|
||||||
if (node->src0->type == GGML_TYPE_F16 &&
|
if (node->src0->type == GGML_TYPE_F16 &&
|
||||||
node->src1->type == GGML_TYPE_F32) {
|
node->src1->type == GGML_TYPE_F32) {
|
||||||
|
#ifdef GGML_USE_ACCELERATE
|
||||||
|
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
|
||||||
|
cur = sizeof(float)*(node->src0->ne[0]*node->src0->ne[1]);
|
||||||
|
} else {
|
||||||
|
cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1);
|
||||||
|
}
|
||||||
|
#else
|
||||||
cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1);
|
cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1);
|
||||||
|
#endif
|
||||||
} else if (node->src0->type == GGML_TYPE_F32 &&
|
} else if (node->src0->type == GGML_TYPE_F32 &&
|
||||||
node->src1->type == GGML_TYPE_F32) {
|
node->src1->type == GGML_TYPE_F32) {
|
||||||
cur = 0;
|
cur = 0;
|
||||||
@ -6585,7 +6670,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
|||||||
} break;
|
} break;
|
||||||
case GGML_OP_SCALE:
|
case GGML_OP_SCALE:
|
||||||
{
|
{
|
||||||
node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
|
node->n_tasks = n_threads;
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_CPY:
|
case GGML_OP_CPY:
|
||||||
case GGML_OP_RESHAPE:
|
case GGML_OP_RESHAPE:
|
||||||
@ -6599,7 +6684,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
|||||||
} break;
|
} break;
|
||||||
case GGML_OP_SOFT_MAX:
|
case GGML_OP_SOFT_MAX:
|
||||||
{
|
{
|
||||||
node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
|
node->n_tasks = n_threads;
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_ROPE:
|
case GGML_OP_ROPE:
|
||||||
{
|
{
|
||||||
@ -6714,7 +6799,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
|||||||
struct ggml_compute_params params = {
|
struct ggml_compute_params params = {
|
||||||
/*.type =*/ GGML_TASK_INIT,
|
/*.type =*/ GGML_TASK_INIT,
|
||||||
/*.ith =*/ 0,
|
/*.ith =*/ 0,
|
||||||
/*.nth =*/ n_threads,
|
/*.nth =*/ node->n_tasks,
|
||||||
/*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
|
/*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
|
||||||
/*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
|
/*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
|
||||||
};
|
};
|
||||||
@ -6898,9 +6983,9 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) {
|
|||||||
|
|
||||||
perf_total_per_op_us[node->op] += node->perf_time_us;
|
perf_total_per_op_us[node->op] += node->perf_time_us;
|
||||||
|
|
||||||
GGML_PRINT(" - %3d: [ %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
|
GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
|
||||||
i,
|
i,
|
||||||
node->ne[0], node->ne[1],
|
node->ne[0], node->ne[1], node->ne[2],
|
||||||
GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
|
GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
|
||||||
(double) node->perf_cycles / (double) ggml_cycles_per_ms(),
|
(double) node->perf_cycles / (double) ggml_cycles_per_ms(),
|
||||||
(double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
|
(double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
|
||||||
|
2
main.cpp
2
main.cpp
@ -21,7 +21,7 @@ std::string to_timestamp(int64_t t) {
|
|||||||
msec = msec - min * (1000 * 60);
|
msec = msec - min * (1000 * 60);
|
||||||
int64_t sec = msec / 1000;
|
int64_t sec = msec / 1000;
|
||||||
msec = msec - sec * 1000;
|
msec = msec - sec * 1000;
|
||||||
|
|
||||||
char buf[32];
|
char buf[32];
|
||||||
snprintf(buf, sizeof(buf), "%02d:%02d:%02d.%03d", (int) hr, (int) min, (int) sec, (int) msec);
|
snprintf(buf, sizeof(buf), "%02d:%02d:%02d.%03d", (int) hr, (int) min, (int) sec, (int) msec);
|
||||||
|
|
||||||
|
12
whisper.cpp
12
whisper.cpp
@ -15,7 +15,7 @@
|
|||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
#define USE_FLASH_ATTN
|
#define USE_FLASH_ATTN
|
||||||
#define USE_FLASH_FF
|
//#define USE_FLASH_FF
|
||||||
|
|
||||||
// available whisper models
|
// available whisper models
|
||||||
enum e_model {
|
enum e_model {
|
||||||
@ -148,11 +148,11 @@ static const std::map<e_model, size_t> MEM_REQ_ENCODE = {
|
|||||||
};
|
};
|
||||||
|
|
||||||
static const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
|
static const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
|
||||||
{ MODEL_TINY, 64ull*MB },
|
{ MODEL_TINY, 104ull*MB },
|
||||||
{ MODEL_BASE, 84ull*MB },
|
{ MODEL_BASE, 138ull*MB },
|
||||||
{ MODEL_SMALL, 128ull*MB },
|
{ MODEL_SMALL, 208ull*MB },
|
||||||
{ MODEL_MEDIUM, 172ull*MB },
|
{ MODEL_MEDIUM, 280ull*MB },
|
||||||
{ MODEL_LARGE, 216ull*MB },
|
{ MODEL_LARGE, 354ull*MB },
|
||||||
};
|
};
|
||||||
|
|
||||||
static const std::map<e_model, size_t> MEM_REQ_DECODE = {
|
static const std::map<e_model, size_t> MEM_REQ_DECODE = {
|
||||||
|
Loading…
Reference in New Issue
Block a user