ggml : add IQ2 to test-backend-ops + refactoring (llama/4990)
* ggml : add IQ2 to test-backend-ops + refactoring ggml-ci * cuda : update supports_op for IQ2 ggml-ci * ci : enable LLAMA_CUBLAS=1 for CUDA nodes ggml-ci * cuda : fix out-of-bounds-access in `mul_mat_vec_q` ggml-ci * tests : avoid creating RNGs for each Q tensor ggml-ci * tests : avoid creating RNGs for each tensor ggml-ci
This commit is contained in:
parent
fd10234363
commit
4aea058e5a
@ -692,6 +692,8 @@ GGML_CALL static bool ggml_backend_cpu_graph_compute(ggml_backend_t backend, str
|
|||||||
|
|
||||||
GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||||
switch (op->op) {
|
switch (op->op) {
|
||||||
|
case GGML_OP_CPY:
|
||||||
|
return op->type != GGML_TYPE_IQ2_XXS && op->type != GGML_TYPE_IQ2_XS; // missing type_traits.from_float
|
||||||
case GGML_OP_MUL_MAT:
|
case GGML_OP_MUL_MAT:
|
||||||
return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
|
return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
|
||||||
default:
|
default:
|
||||||
|
12
ggml-cuda.cu
12
ggml-cuda.cu
@ -5131,10 +5131,10 @@ static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void *
|
|||||||
const block_q_t * x = (const block_q_t *) vx;
|
const block_q_t * x = (const block_q_t *) vx;
|
||||||
const block_q8_1 * y = (const block_q8_1 *) vy;
|
const block_q8_1 * y = (const block_q8_1 *) vy;
|
||||||
|
|
||||||
for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
|
for (int i = threadIdx.x / (qi/vdr); i < blocks_per_row; i += blocks_per_warp) {
|
||||||
const int ibx = row*blocks_per_row + i + threadIdx.x / (qi/vdr); // x block index
|
const int ibx = row*blocks_per_row + i; // x block index
|
||||||
|
|
||||||
const int iby = (i + threadIdx.x / (qi/vdr)) * (qk/QK8_1); // y block index that aligns with ibx
|
const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
|
||||||
|
|
||||||
const int iqs = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int
|
const int iqs = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int
|
||||||
|
|
||||||
@ -10918,6 +10918,12 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||||||
if (a->ne[3] != b->ne[3]) {
|
if (a->ne[3] != b->ne[3]) {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
ggml_type a_type = a->type;
|
||||||
|
if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS) {
|
||||||
|
if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
return true;
|
return true;
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_GET_ROWS:
|
case GGML_OP_GET_ROWS:
|
||||||
|
@ -1274,7 +1274,12 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t *
|
|||||||
}
|
}
|
||||||
float sumlx = 0;
|
float sumlx = 0;
|
||||||
float suml2 = 0;
|
float suml2 = 0;
|
||||||
|
#ifdef HAVE_BUGGY_APPLE_LINKER
|
||||||
|
// use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
|
||||||
|
for (volatile int i = 0; i < n; ++i) {
|
||||||
|
#else
|
||||||
for (int i = 0; i < n; ++i) {
|
for (int i = 0; i < n; ++i) {
|
||||||
|
#endif
|
||||||
int l = nearest_int(iscale * x[i]);
|
int l = nearest_int(iscale * x[i]);
|
||||||
l = MAX(-nmax, MIN(nmax-1, l));
|
l = MAX(-nmax, MIN(nmax-1, l));
|
||||||
L[i] = l + nmax;
|
L[i] = l + nmax;
|
||||||
@ -1649,7 +1654,12 @@ static float make_qkx3_quants(int n, int nmax, const float * restrict x, const f
|
|||||||
float max = x[0];
|
float max = x[0];
|
||||||
float sum_w = weights ? weights[0] : x[0]*x[0];
|
float sum_w = weights ? weights[0] : x[0]*x[0];
|
||||||
float sum_x = sum_w * x[0];
|
float sum_x = sum_w * x[0];
|
||||||
|
#ifdef HAVE_BUGGY_APPLE_LINKER
|
||||||
|
// use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
|
||||||
|
for (volatile int i = 1; i < n; ++i) {
|
||||||
|
#else
|
||||||
for (int i = 1; i < n; ++i) {
|
for (int i = 1; i < n; ++i) {
|
||||||
|
#endif
|
||||||
if (x[i] < min) min = x[i];
|
if (x[i] < min) min = x[i];
|
||||||
if (x[i] > max) max = x[i];
|
if (x[i] > max) max = x[i];
|
||||||
float w = weights ? weights[i] : x[i]*x[i];
|
float w = weights ? weights[i] : x[i]*x[i];
|
||||||
@ -1660,7 +1670,7 @@ static float make_qkx3_quants(int n, int nmax, const float * restrict x, const f
|
|||||||
min = 0;
|
min = 0;
|
||||||
}
|
}
|
||||||
if (max <= min) {
|
if (max <= min) {
|
||||||
for (int i = 0; i < n; ++i) L[i] = 0;
|
memset(L, 0, n);
|
||||||
*the_min = -min;
|
*the_min = -min;
|
||||||
return 0.f;
|
return 0.f;
|
||||||
}
|
}
|
||||||
@ -1862,7 +1872,7 @@ static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restri
|
|||||||
|
|
||||||
size_t quantize_q2_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
size_t quantize_q2_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||||
(void)hist;
|
(void)hist;
|
||||||
int row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
|
size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
|
||||||
if (!quant_weights) {
|
if (!quant_weights) {
|
||||||
quantize_row_q2_K_reference(src, dst, nrow*n_per_row);
|
quantize_row_q2_K_reference(src, dst, nrow*n_per_row);
|
||||||
}
|
}
|
||||||
@ -2181,7 +2191,7 @@ static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restri
|
|||||||
|
|
||||||
size_t quantize_q3_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
size_t quantize_q3_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||||
(void)hist;
|
(void)hist;
|
||||||
int row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
|
size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
|
||||||
if (!quant_weights) {
|
if (!quant_weights) {
|
||||||
quantize_row_q3_K_reference(src, dst, nrow*n_per_row);
|
quantize_row_q3_K_reference(src, dst, nrow*n_per_row);
|
||||||
}
|
}
|
||||||
@ -2448,7 +2458,7 @@ static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restri
|
|||||||
|
|
||||||
size_t quantize_q4_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
size_t quantize_q4_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||||
(void)hist;
|
(void)hist;
|
||||||
int row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
|
size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
|
||||||
if (!quant_weights) {
|
if (!quant_weights) {
|
||||||
quantize_row_q4_K_reference(src, dst, nrow*n_per_row);
|
quantize_row_q4_K_reference(src, dst, nrow*n_per_row);
|
||||||
}
|
}
|
||||||
@ -2771,7 +2781,7 @@ static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restri
|
|||||||
|
|
||||||
size_t quantize_q5_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
size_t quantize_q5_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||||
(void)hist;
|
(void)hist;
|
||||||
int row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
|
size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
|
||||||
if (!quant_weights) {
|
if (!quant_weights) {
|
||||||
quantize_row_q5_K_reference(src, dst, nrow*n_per_row);
|
quantize_row_q5_K_reference(src, dst, nrow*n_per_row);
|
||||||
}
|
}
|
||||||
@ -3025,7 +3035,7 @@ static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restri
|
|||||||
|
|
||||||
size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||||
(void)hist;
|
(void)hist;
|
||||||
int row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
|
size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
|
||||||
if (!quant_weights) {
|
if (!quant_weights) {
|
||||||
quantize_row_q6_K_reference(src, dst, nrow*n_per_row);
|
quantize_row_q6_K_reference(src, dst, nrow*n_per_row);
|
||||||
}
|
}
|
||||||
@ -3072,7 +3082,7 @@ size_t quantize_q4_0(const float * src, void * dst, int nrow, int n_per_row, int
|
|||||||
if (!quant_weights) {
|
if (!quant_weights) {
|
||||||
return ggml_quantize_q4_0(src, dst, nrow*n_per_row, n_per_row, hist);
|
return ggml_quantize_q4_0(src, dst, nrow*n_per_row, n_per_row, hist);
|
||||||
}
|
}
|
||||||
int row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
|
size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
|
||||||
char * qrow = (char *)dst;
|
char * qrow = (char *)dst;
|
||||||
for (int row = 0; row < nrow; ++row) {
|
for (int row = 0; row < nrow; ++row) {
|
||||||
quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
|
quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
|
||||||
@ -3116,7 +3126,7 @@ size_t quantize_q4_1(const float * src, void * dst, int nrow, int n_per_row, int
|
|||||||
if (!quant_weights) {
|
if (!quant_weights) {
|
||||||
return ggml_quantize_q4_1(src, dst, nrow*n_per_row, n_per_row, hist);
|
return ggml_quantize_q4_1(src, dst, nrow*n_per_row, n_per_row, hist);
|
||||||
}
|
}
|
||||||
int row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
|
size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
|
||||||
char * qrow = (char *)dst;
|
char * qrow = (char *)dst;
|
||||||
for (int row = 0; row < nrow; ++row) {
|
for (int row = 0; row < nrow; ++row) {
|
||||||
quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
|
quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
|
||||||
@ -3169,7 +3179,7 @@ size_t quantize_q5_0(const float * src, void * dst, int nrow, int n_per_row, int
|
|||||||
if (!quant_weights) {
|
if (!quant_weights) {
|
||||||
return ggml_quantize_q5_0(src, dst, nrow*n_per_row, n_per_row, hist);
|
return ggml_quantize_q5_0(src, dst, nrow*n_per_row, n_per_row, hist);
|
||||||
}
|
}
|
||||||
int row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
|
size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
|
||||||
char * qrow = (char *)dst;
|
char * qrow = (char *)dst;
|
||||||
for (int row = 0; row < nrow; ++row) {
|
for (int row = 0; row < nrow; ++row) {
|
||||||
quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
|
quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
|
||||||
@ -3221,7 +3231,7 @@ size_t quantize_q5_1(const float * src, void * dst, int nrow, int n_per_row, int
|
|||||||
if (!quant_weights) {
|
if (!quant_weights) {
|
||||||
return ggml_quantize_q5_1(src, dst, nrow*n_per_row, n_per_row, hist);
|
return ggml_quantize_q5_1(src, dst, nrow*n_per_row, n_per_row, hist);
|
||||||
}
|
}
|
||||||
int row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
|
size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
|
||||||
char * qrow = (char *)dst;
|
char * qrow = (char *)dst;
|
||||||
for (int row = 0; row < nrow; ++row) {
|
for (int row = 0; row < nrow; ++row) {
|
||||||
quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
|
quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
|
||||||
@ -8565,7 +8575,7 @@ static int iq2_compare_func(const void * left, const void * right) {
|
|||||||
return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
|
return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void q2xs_init_impl(int grid_size) {
|
void iq2xs_init_impl(int grid_size) {
|
||||||
const int gindex = iq2_data_index(grid_size);
|
const int gindex = iq2_data_index(grid_size);
|
||||||
if (iq2_data[gindex].grid) {
|
if (iq2_data[gindex].grid) {
|
||||||
return;
|
return;
|
||||||
@ -8720,19 +8730,7 @@ static void q2xs_init_impl(int grid_size) {
|
|||||||
free(dist2);
|
free(dist2);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_init_iq2_quantization(enum ggml_type type) {
|
void iq2xs_free_impl(int grid_size) {
|
||||||
if (type == GGML_TYPE_IQ2_XXS) {
|
|
||||||
q2xs_init_impl(256);
|
|
||||||
}
|
|
||||||
else if (type == GGML_TYPE_IQ2_XS) {
|
|
||||||
q2xs_init_impl(512);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
fprintf(stderr, "======================== Why are you calling %s with type %d?\n", __func__, (int)type);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static void q2xs_deinit_impl(int grid_size) {
|
|
||||||
GGML_ASSERT(grid_size == 256 || grid_size == 512 || grid_size == 1024);
|
GGML_ASSERT(grid_size == 256 || grid_size == 512 || grid_size == 1024);
|
||||||
const int gindex = iq2_data_index(grid_size);
|
const int gindex = iq2_data_index(grid_size);
|
||||||
if (iq2_data[gindex].grid) {
|
if (iq2_data[gindex].grid) {
|
||||||
@ -8742,18 +8740,6 @@ static void q2xs_deinit_impl(int grid_size) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_deinit_iq2_quantization(enum ggml_type type) {
|
|
||||||
if (type == GGML_TYPE_IQ2_XXS) {
|
|
||||||
q2xs_deinit_impl(256);
|
|
||||||
}
|
|
||||||
else if (type == GGML_TYPE_IQ2_XS) {
|
|
||||||
q2xs_deinit_impl(512);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
fprintf(stderr, "======================== Why are you calling %s with type %d?\n", __func__, (int)type);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
|
static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
|
||||||
const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
|
const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
|
||||||
int num_neighbors = neighbours[0];
|
int num_neighbors = neighbours[0];
|
||||||
@ -8786,10 +8772,10 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict
|
|||||||
const int * kmap_q2xs = iq2_data[gindex].map;
|
const int * kmap_q2xs = iq2_data[gindex].map;
|
||||||
const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
|
const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
|
||||||
|
|
||||||
GGML_ASSERT(quant_weights);
|
GGML_ASSERT(quant_weights && "missing quantization weights");
|
||||||
GGML_ASSERT(kgrid_q2xs);
|
GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
|
||||||
GGML_ASSERT(kmap_q2xs);
|
GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
|
||||||
GGML_ASSERT(kneighbors_q2xs);
|
GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
|
||||||
GGML_ASSERT(n%QK_K == 0);
|
GGML_ASSERT(n%QK_K == 0);
|
||||||
|
|
||||||
const int kMaxQ = 3;
|
const int kMaxQ = 3;
|
||||||
@ -9005,10 +8991,10 @@ static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict v
|
|||||||
const int * kmap_q2xs = iq2_data[gindex].map;
|
const int * kmap_q2xs = iq2_data[gindex].map;
|
||||||
const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
|
const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
|
||||||
|
|
||||||
GGML_ASSERT(quant_weights);
|
GGML_ASSERT(quant_weights && "missing quantization weights");
|
||||||
GGML_ASSERT(kmap_q2xs);
|
GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
|
||||||
GGML_ASSERT(kgrid_q2xs);
|
GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
|
||||||
GGML_ASSERT(kneighbors_q2xs);
|
GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
|
||||||
GGML_ASSERT(n%QK_K == 0);
|
GGML_ASSERT(n%QK_K == 0);
|
||||||
|
|
||||||
const int kMaxQ = 3;
|
const int kMaxQ = 3;
|
||||||
|
@ -257,3 +257,6 @@ size_t quantize_q4_0 (const float * src, void * dst, int nrows, int n_per_row,
|
|||||||
size_t quantize_q4_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
size_t quantize_q4_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||||
size_t quantize_q5_0 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
size_t quantize_q5_0 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||||
size_t quantize_q5_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
size_t quantize_q5_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||||
|
|
||||||
|
void iq2xs_init_impl(int grid_size);
|
||||||
|
void iq2xs_free_impl(int grid_size);
|
||||||
|
34
ggml.c
34
ggml.c
@ -18524,6 +18524,28 @@ enum ggml_opt_result ggml_opt_resume_g(
|
|||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
void ggml_quantize_init(enum ggml_type type) {
|
||||||
|
ggml_critical_section_start();
|
||||||
|
|
||||||
|
switch (type) {
|
||||||
|
case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
|
||||||
|
case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
|
||||||
|
default: // nothing
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_critical_section_end();
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_quantize_free(void) {
|
||||||
|
ggml_critical_section_start();
|
||||||
|
|
||||||
|
iq2xs_free_impl(256);
|
||||||
|
iq2xs_free_impl(512);
|
||||||
|
|
||||||
|
ggml_critical_section_end();
|
||||||
|
}
|
||||||
|
|
||||||
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
|
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
|
||||||
assert(k % QK4_0 == 0);
|
assert(k % QK4_0 == 0);
|
||||||
const int nb = k / QK4_0;
|
const int nb = k / QK4_0;
|
||||||
@ -18651,9 +18673,15 @@ size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t *
|
|||||||
return (n/QK8_0*sizeof(block_q8_0));
|
return (n/QK8_0*sizeof(block_q8_0));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool ggml_quantize_requires_imatrix(enum ggml_type type) {
|
||||||
|
return
|
||||||
|
type == GGML_TYPE_IQ2_XXS ||
|
||||||
|
type == GGML_TYPE_IQ2_XS;
|
||||||
|
}
|
||||||
|
|
||||||
size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
|
size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
|
||||||
int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
|
int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
|
||||||
(void)imatrix;
|
ggml_quantize_init(type); // this is noop if already initialized
|
||||||
size_t result = 0;
|
size_t result = 0;
|
||||||
int n = nrows * n_per_row;
|
int n = nrows * n_per_row;
|
||||||
switch (type) {
|
switch (type) {
|
||||||
@ -18766,13 +18794,13 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
|
|||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_F16:
|
case GGML_TYPE_F16:
|
||||||
{
|
{
|
||||||
int elemsize = sizeof(ggml_fp16_t);
|
size_t elemsize = sizeof(ggml_fp16_t);
|
||||||
ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
|
ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
|
||||||
result = n * elemsize;
|
result = n * elemsize;
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_F32:
|
case GGML_TYPE_F32:
|
||||||
{
|
{
|
||||||
int elemsize = sizeof(float);
|
size_t elemsize = sizeof(float);
|
||||||
result = n * elemsize;
|
result = n * elemsize;
|
||||||
memcpy((uint8_t *)dst + start * elemsize, src + start, result);
|
memcpy((uint8_t *)dst + start * elemsize, src + start, result);
|
||||||
} break;
|
} break;
|
||||||
|
20
ggml.h
20
ggml.h
@ -2065,6 +2065,18 @@ extern "C" {
|
|||||||
// quantization
|
// quantization
|
||||||
//
|
//
|
||||||
|
|
||||||
|
// - ggml_quantize_init can be called multiple times with the same type
|
||||||
|
// it will only initialize the quantization tables for the first call or after ggml_quantize_free
|
||||||
|
// automatically called by ggml_quantize_chunk for convenience
|
||||||
|
//
|
||||||
|
// - ggml_quantize_free will free any memory allocated by ggml_quantize_init
|
||||||
|
// call this at the end of the program to avoid memory leaks
|
||||||
|
//
|
||||||
|
// note: these are thread-safe
|
||||||
|
//
|
||||||
|
GGML_API void ggml_quantize_init(enum ggml_type type);
|
||||||
|
GGML_API void ggml_quantize_free(void);
|
||||||
|
|
||||||
// TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
|
// TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
|
||||||
GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||||
GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||||
@ -2078,13 +2090,13 @@ extern "C" {
|
|||||||
GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||||
GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||||
|
|
||||||
|
// some quantization type cannot be used without an importance matrix
|
||||||
|
GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
|
||||||
|
|
||||||
|
// calls ggml_quantize_init internally (i.e. can allocate memory)
|
||||||
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst,
|
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst,
|
||||||
int start, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
int start, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||||
|
|
||||||
// These are needed for IQ2_XS and IQ2_XXS quantizations
|
|
||||||
GGML_API void ggml_init_iq2_quantization(enum ggml_type type);
|
|
||||||
GGML_API void ggml_deinit_iq2_quantization(enum ggml_type type);
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// gguf
|
// gguf
|
||||||
//
|
//
|
||||||
|
Loading…
Reference in New Issue
Block a user