From 38d40b9972f70486c87087d36e9a0e24ae6e6c99 Mon Sep 17 00:00:00 2001 From: Faisal Zaghloul Date: Thu, 29 Aug 2024 19:20:53 -0400 Subject: [PATCH] Threadpool: take 2 (llama/8672) * Introduce ggml_compute_threadpool - OpenMP functional: check - Vanilla ggml functional: Check - ggml w/threadpool functional: Check - OpenMP no regression: No glaring problems - Vanilla ggml no regression: No glaring problems - ggml w/threadpool no regression: No glaring problems * Minor fixes * fixed use after release bug * fixed a harmless race condition * Fix Android bulid issue * fix more race conditions * fix deadlock for cases where cgraph.n_nodes == 1 and fix --poll case * threadpool: use cpu_get_num_math to set the default number of threadpool threads This way we avoid using E-Cores and Hyperthreaded siblings. * bench: create fresh threadpool for each test For benchmarking it's better to start a fresh pool for each test with the exact number of threads needed for that test. Having larger pools is suboptimal (causes more load, etc). * atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior. * threadpool: make polling the default to match openmp behavior All command line args now allow for setting poll to 0 (false). * threadpool: do not wakeup threads in already paused threadpool * fix potential race condition in check_for_work * threadpool: do not create two threadpools if their params are identical * threadpool: reduce pause/resume/wakeup overhead in common cases We now start threadpool in paused state only if we have two. The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead. * threadpool: add support for hybrid polling poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var. poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ... The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms. We can tune this further as things evolve. * threadpool: reduce the number of barrier required New work is now indicated with an atomic counter that is incremented for each new graph that needs to be computed. This removes the need for extra barrier for clearing the "new_work" and removes the special case for trivial graphs. * threadpool: remove special-casing for disposable threadpools With the efficient hybrid polling there is no need to make disposable pools any different. This simplifies the overall logic and reduces branching. Include n_threads in debug print for disposable threadpool. Declare pause and stop flags as atomic_bool This doesn't actually generate any memory barriers and simply informs the thread sanitizer that these flags can be written & read by different threads without locking. * threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs) This fixes the race condition with very small graphs where the main thread happens to start a new graph while the workers are just about to exit from barriers. * threadpool: use relaxed order for chunk sync Full memory barrier is an overkill for this since each thread works on different chunk * threadpool: remove abort_callback from threadpool state * threadpool: better naming for thread/cpumask releated functions * threadpool: consistent use of int type for n_threads params * threadpool: add support for ggml_threadpool_params_default/init Also removes the need for explicit mask_specified param. all-zero cpumask means use default (usually inherited) cpu affinity mask. * threadpool: move typedef into ggml.h * threadpool: fix apply_priority() function name * threadpool: fix swift wrapper errors due to n_threads int type cleanup * threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled * threadpool: replace checks for compute_thread ret code with proper status check * threadpool: simplify threadpool init logic and fix main thread affinity application Most of the init code is now exactly the same between threadpool and openmp. * threadpool: update threadpool resume/pause function names * threadpool: enable openmp by default for now * threadpool: don't forget to free workers state when omp is enabled * threadpool: avoid updating process priority on the platforms that do not require it On Windows we need to change overall process priority class in order to set thread priorities, but on Linux, Mac, etc we do not need to touch the overall process settings. * threadpool: update calling thread prio and affinity only at start/resume This avoids extra syscalls for each graph_compute() * llama-bench: turn threadpool params into vectors, add output headers, etc * llama-bench: add support for cool off between tests --delay This helps for long running tests on platforms that are thermally limited (phones, laptops, etc). --delay (disabled by default) introduces the sleep for N seconds before starting each test. * threadpool: move process priority setting into the apps (bench and cli) This avoids changing the overall process priority on Windows for the apps that use ggml/llama.cpp directy. * threadpool: move all pause/resume logic into ggml * threadpool: futher api cleanup and prep for future refactoring All threadpool related functions and structs use ggml_threadpool prefix. * threadpool: minor indent fixes * threadpool: improve setprioty error message * Update examples/llama-bench/llama-bench.cpp Co-authored-by: slaren * threadpool: fix indent in set_threadpool call * use int32_t for n_thread type in public llama.cpp API * threadpool: use _new and _free instead of _create and _release * fix two more public APIs to use int32_t for n_threads * build: set _GNU_SOURCE for Adroid --------- Co-authored-by: Max Krasnyansky Co-authored-by: fmz Co-authored-by: Max Krasnyansky Co-authored-by: slaren --- ggml/include/ggml-alloc.h | 4 +- ggml/include/ggml-backend.h | 1 + ggml/include/ggml.h | 43 +- ggml/src/CMakeLists.txt | 2 +- ggml/src/ggml-backend.c | 25 +- ggml/src/ggml.c | 850 ++++++++++++++++++++++++++++-------- 6 files changed, 739 insertions(+), 186 deletions(-) diff --git a/ggml/include/ggml-alloc.h b/ggml/include/ggml-alloc.h index 434c13b..0dff47d 100644 --- a/ggml/include/ggml-alloc.h +++ b/ggml/include/ggml-alloc.h @@ -7,8 +7,8 @@ extern "C" { #endif typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t; -typedef struct ggml_backend_buffer * ggml_backend_buffer_t; -typedef struct ggml_backend * ggml_backend_t; +typedef struct ggml_backend_buffer * ggml_backend_buffer_t; +typedef struct ggml_backend * ggml_backend_t; // Tensor allocator struct ggml_tallocr { diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h index e73b9a7..e497b6d 100644 --- a/ggml/include/ggml-backend.h +++ b/ggml/include/ggml-backend.h @@ -103,6 +103,7 @@ extern "C" { GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend); GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads); + GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool); GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data); // Create a backend buffer from an existing pointer diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index 59fa80e..b231f6c 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -231,6 +231,8 @@ #define GGML_MAX_SRC 10 #ifndef GGML_MAX_NAME #define GGML_MAX_NAME 64 +#define GGML_MAX_N_THREADS 512 + #endif #define GGML_MAX_OP_PARAMS 64 #define GGML_DEFAULT_N_THREADS 4 @@ -628,6 +630,29 @@ extern "C" { // If it returns true, the computation is aborted typedef bool (*ggml_abort_callback)(void * data); + // Scheduling priorities + enum ggml_sched_priority { + GGML_SCHED_PRIO_NORMAL, + GGML_SCHED_PRIO_MEDIUM, + GGML_SCHED_PRIO_HIGH, + GGML_SCHED_PRIO_REALTIME + }; + + // Threadpool params + // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults + struct ggml_threadpool_params { + bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings) + int n_threads; // number of threads + enum ggml_sched_priority prio; // thread priority + uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling) + bool strict_cpu; // strict cpu placement + bool paused; // start in paused state + }; + + struct ggml_threadpool; // forward declaration, see ggml.c + + typedef struct ggml_threadpool * ggml_threadpool_t; + // the compute plan that needs to be prepared for ggml_graph_compute() // since https://github.com/ggerganov/ggml/issues/287 struct ggml_cplan { @@ -635,6 +660,7 @@ extern "C" { uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()` int n_threads; + struct ggml_threadpool * threadpool; // abort ggml_graph_compute when true ggml_abort_callback abort_callback; @@ -2057,10 +2083,23 @@ extern "C" { GGML_API size_t ggml_graph_overhead(void); GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads); + GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads); + GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params *p, int n_threads); + GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params *p0, const struct ggml_threadpool_params *p1); + GGML_API struct ggml_threadpool* ggml_threadpool_new (struct ggml_threadpool_params * params); + GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool); + GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool); + GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool); + GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool); + // ggml_graph_plan() has to be called before ggml_graph_compute() // when plan.work_size > 0, caller must allocate memory for plan.work_data - GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/); - GGML_API enum ggml_status ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan); + GGML_API struct ggml_cplan ggml_graph_plan( + const struct ggml_cgraph * cgraph, + int n_threads, /* = GGML_DEFAULT_N_THREADS */ + struct ggml_threadpool * threadpool /* = NULL */ ); + GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan); + // same as ggml_graph_compute() but the work data is allocated as a part of the context // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads); diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index ff84b9b..ec7d308 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -1247,7 +1247,7 @@ endif() # Data types, macros and functions related to controlling CPU affinity and # some memory allocation are available on Linux through GNU extensions in libc -if (CMAKE_SYSTEM_NAME MATCHES "Linux") +if (CMAKE_SYSTEM_NAME MATCHES "Linux" OR CMAKE_SYSTEM_NAME MATCHES "Android") add_compile_definitions(_GNU_SOURCE) endif() diff --git a/ggml/src/ggml-backend.c b/ggml/src/ggml-backend.c index 6ba5c08..30b411d 100644 --- a/ggml/src/ggml-backend.c +++ b/ggml/src/ggml-backend.c @@ -722,9 +722,11 @@ ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) { #endif struct ggml_backend_cpu_context { - int n_threads; - void * work_data; - size_t work_size; + int n_threads; + ggml_threadpool_t threadpool; + + void * work_data; + size_t work_size; ggml_abort_callback abort_callback; void * abort_callback_data; @@ -759,7 +761,7 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu)); - cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); + cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool); cpu_plan->cgraph = *cgraph; // FIXME: deep copy if (cpu_plan->cplan.work_size > 0) { @@ -796,7 +798,7 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backe GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; - struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); + struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool); if (cpu_ctx->work_size < cplan.work_size) { free(cpu_ctx->work_data); @@ -877,6 +879,7 @@ ggml_backend_t ggml_backend_cpu_init(void) { } ctx->n_threads = GGML_DEFAULT_N_THREADS; + ctx->threadpool = NULL; ctx->work_data = NULL; ctx->work_size = 0; ctx->abort_callback = NULL; @@ -907,6 +910,18 @@ void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) { ctx->n_threads = n_threads; } +void ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_threadpool_t threadpool) { + GGML_ASSERT(ggml_backend_is_cpu(backend_cpu)); + + struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; + + if (ctx->threadpool && ctx->threadpool != threadpool) { + // already had a different threadpool, pause/suspend it before switching + ggml_threadpool_pause(ctx->threadpool); + } + ctx->threadpool = threadpool; +} + void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) { GGML_ASSERT(ggml_backend_is_cpu(backend_cpu)); diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 0c82001..948f9ad 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -69,23 +69,42 @@ int ggml_sve_cnt_b = 0; #endif #include +#if !defined(__clang__) typedef volatile LONG atomic_int; typedef atomic_int atomic_bool; typedef atomic_int atomic_flag; #define ATOMIC_FLAG_INIT 0 +typedef enum { + memory_order_relaxed, + memory_order_consume, + memory_order_acquire, + memory_order_release, + memory_order_acq_rel, + memory_order_seq_cst +} memory_order; + static void atomic_store(atomic_int * ptr, LONG val) { InterlockedExchange(ptr, val); } +static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) { + // TODO: add support for explicit memory order + InterlockedExchange(ptr, val); +} static LONG atomic_load(atomic_int * ptr) { return InterlockedCompareExchange(ptr, 0, 0); } +static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) { + // TODO: add support for explicit memory order + return InterlockedCompareExchange(ptr, 0, 0); +} static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) { return InterlockedExchangeAdd(ptr, inc); } -static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) { - return atomic_fetch_add(ptr, -(dec)); +static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) { + // TODO: add support for explicit memory order + return InterlockedExchangeAdd(ptr, inc); } static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) { return InterlockedExchange(ptr, 1); @@ -93,6 +112,9 @@ static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) { static void atomic_flag_clear(atomic_flag * ptr) { InterlockedExchange(ptr, 0); } +#else // clang +#include +#endif typedef HANDLE pthread_t; @@ -121,8 +143,10 @@ static int sched_yield (void) { return 0; } #else + #include #include +#include typedef void * thread_ret_t; @@ -1868,28 +1892,102 @@ struct ggml_context_container { struct ggml_context context; }; -struct ggml_compute_state_shared { - const struct ggml_cgraph * cgraph; - const struct ggml_cplan * cplan; +// +// Threading defs +// - int n_threads; +typedef pthread_t ggml_thread_t; + +#if defined(_WIN32) + +typedef CONDITION_VARIABLE ggml_cond_t; +typedef SRWLOCK ggml_mutex_t; + +#define ggml_mutex_init(m) InitializeSRWLock(m) +#define ggml_mutex_destroy(m) +#define ggml_mutex_lock(m) AcquireSRWLockExclusive(m) +#define ggml_mutex_unlock(m) ReleaseSRWLockExclusive(m) +#define ggml_mutex_lock_shared(m) AcquireSRWLockShared(m) +#define ggml_mutex_unlock_shared(m) ReleaseSRWLockShared(m) + +#define ggml_cond_init(c) InitializeConditionVariable(c) +#define ggml_cond_destroy(c) +#define ggml_cond_wait(c, m) SleepConditionVariableSRW(c, m, INFINITE, CONDITION_VARIABLE_LOCKMODE_SHARED) +#define ggml_cond_broadcast(c) WakeAllConditionVariable(c) + +#define ggml_thread_create pthread_create +#define ggml_thread_join pthread_join + +#else + +typedef pthread_cond_t ggml_cond_t; +typedef pthread_mutex_t ggml_mutex_t; + +#define ggml_mutex_init(m) pthread_mutex_init(m, NULL) +#define ggml_mutex_destroy(m) pthread_mutex_destroy(m) +#define ggml_mutex_lock(m) pthread_mutex_lock(m) +#define ggml_mutex_unlock(m) pthread_mutex_unlock(m) +#define ggml_mutex_lock_shared(m) pthread_mutex_lock(m) +#define ggml_mutex_unlock_shared(m) pthread_mutex_unlock(m) + +#define ggml_lock_init(x) UNUSED(x) +#define ggml_lock_destroy(x) UNUSED(x) +#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64)) +#define ggml_lock_lock(x) _mm_pause() +#else +#define ggml_lock_lock(x) UNUSED(x) +#endif +#define ggml_lock_unlock(x) UNUSED(x) + +#define GGML_LOCK_INITIALIZER 0 +#define ggml_cond_init(c) pthread_cond_init(c, NULL) +#define ggml_cond_destroy(c) pthread_cond_destroy(c) +#define ggml_cond_wait(c, m) pthread_cond_wait(c, m) +#define ggml_cond_broadcast(c) pthread_cond_broadcast(c) + +#define ggml_thread_create pthread_create +#define ggml_thread_join pthread_join + +#endif + +// Threadpool def +struct ggml_threadpool { + ggml_mutex_t mutex; // mutex for cond.var + ggml_cond_t cond; // cond.var for waiting for new work + + struct ggml_cgraph * cgraph; + struct ggml_cplan * cplan; // synchronization primitives + atomic_int n_graph; // incremented when there is work to be done (i.e each graph) atomic_int n_barrier; atomic_int n_barrier_passed; + atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads. - ggml_abort_callback abort_callback; // abort ggml_graph_compute when true - void * abort_callback_data; + // these are atomic as an annotation for thread-sanitizer + atomic_bool stop; // Used for stopping the threadpool altogether + atomic_bool pause; // Used for pausing the threadpool or individual threads - atomic_int current_chunk; // currently processing chunk during mul_mat, shared between all the threads + struct ggml_compute_state * workers; // per thread state + int n_threads_max; // number of threads in the pool + int n_threads_cur; // number of threads used in the current graph + + int32_t prio; // Scheduling priority + uint32_t poll; // Polling level (0 - no polling) enum ggml_status ec; }; +// Per-thread state struct ggml_compute_state { +#ifndef GGML_USE_OPENMP ggml_thread_t thrd; + bool cpumask[GGML_MAX_N_THREADS]; + int last_graph; + bool pending; +#endif + struct ggml_threadpool * threadpool; int ith; - struct ggml_compute_state_shared * shared; }; struct ggml_compute_params { @@ -1900,7 +1998,7 @@ struct ggml_compute_params { size_t wsize; void * wdata; - struct ggml_compute_state_shared * shared; + struct ggml_threadpool * threadpool; }; // @@ -2971,6 +3069,19 @@ static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); +// Helpers for polling loops +#if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) ) +static inline void ggml_thread_cpu_relax(void) { + __asm__ volatile("yield" ::: "memory"); +} +#elif defined(__x86_64__) +static inline void ggml_thread_cpu_relax(void) { + _mm_pause(); +} +#else +static inline void ggml_thread_cpu_relax(void) {;} +#endif + // // NUMA support // @@ -3018,42 +3129,36 @@ inline static void ggml_critical_section_start(void) { } #ifdef GGML_USE_OPENMP -static void ggml_barrier(struct ggml_compute_state_shared * shared) { - if (shared->n_threads == 1) { +static void ggml_barrier(struct ggml_threadpool * threadpool) { + if (threadpool->n_threads_cur == 1) { return; } #pragma omp barrier } #else -static void ggml_barrier(struct ggml_compute_state_shared * shared) { - if (shared->n_threads == 1) { +static void ggml_barrier(struct ggml_threadpool * threadpool) { + if (threadpool->n_threads_cur == 1) { return; } - atomic_int * n_barrier = &shared->n_barrier; - atomic_int * n_barrier_passed = &shared->n_barrier_passed; + atomic_int * n_barrier = &threadpool->n_barrier; + atomic_int * n_barrier_passed = &threadpool->n_barrier_passed; - int n_threads = shared->n_threads; - int passed_old = atomic_load(n_barrier_passed); + int n_threads = threadpool->n_threads_cur; + int passed_old = atomic_load_explicit(n_barrier_passed, memory_order_relaxed); if (atomic_fetch_add(n_barrier, 1) == n_threads - 1) { // last thread atomic_store(n_barrier, 0); - atomic_fetch_add(n_barrier_passed, 1); + atomic_fetch_add_explicit(n_barrier_passed, 1, memory_order_relaxed); } else { // wait for other threads - const int n_spin_before_sleep = 100000; while (true) { - for (int i = 0; i < n_spin_before_sleep; i++) { - if (atomic_load(n_barrier_passed) != passed_old) { - return; - } - #if defined(__SSE3__) - _mm_pause(); - #endif + if (atomic_load_explicit(n_barrier_passed, memory_order_relaxed) != passed_old) { + return; } - sched_yield(); + ggml_thread_cpu_relax(); } } } @@ -10139,7 +10244,7 @@ static void ggml_compute_forward_acc_f32( ((char *) src0->data), ggml_nbytes(dst)); } - ggml_barrier(params->shared); + ggml_barrier(params->threadpool); } const int ith = params->ith; @@ -12610,10 +12715,10 @@ UseGgmlGemm1:; if (ith == 0) { // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start. - atomic_store(¶ms->shared->current_chunk, nth); + atomic_store_explicit(¶ms->threadpool->current_chunk, nth, memory_order_relaxed); } - ggml_barrier(params->shared); + ggml_barrier(params->threadpool); #if GGML_USE_LLAMAFILE if (src1->type != vec_dot_type) { @@ -12721,7 +12826,7 @@ UseGgmlGemm2:; break; } - current_chunk = atomic_fetch_add(¶ms->shared->current_chunk, 1); + current_chunk = atomic_fetch_add_explicit(¶ms->threadpool->current_chunk, 1, memory_order_relaxed); } } @@ -12816,7 +12921,7 @@ static void ggml_compute_forward_mul_mat_id( } } - ggml_barrier(params->shared); + ggml_barrier(params->threadpool); // compute each matrix multiplication in sequence for (int cur_a = 0; cur_a < n_as; ++cur_a) { @@ -12970,7 +13075,7 @@ static void ggml_compute_forward_out_prod_f32( if (ith == 0) { ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0); } - ggml_barrier(params->shared); + ggml_barrier(params->threadpool); // dst[:,:,:,:] = 0 // for i2,i3: @@ -13088,7 +13193,7 @@ static void ggml_compute_forward_out_prod_q_f32( if (ith == 0) { ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0); } - ggml_barrier(params->shared); + ggml_barrier(params->threadpool); // parallelize by last three dimensions @@ -13274,7 +13379,7 @@ static void ggml_compute_forward_set_f32( ((char *) src0->data), ggml_nbytes(dst)); } - ggml_barrier(params->shared); + ggml_barrier(params->threadpool); } const int ith = params->ith; @@ -13853,7 +13958,7 @@ static void ggml_compute_forward_diag_mask_f32( ((char *) src0->data), ggml_nbytes(dst)); } - ggml_barrier(params->shared); + ggml_barrier(params->threadpool); } // TODO: handle transposed/permuted matrices @@ -14629,7 +14734,7 @@ static void ggml_compute_forward_conv_transpose_1d_f16_f32( // need to zero dst since we are accumulating into it memset(dst->data, 0, ggml_nbytes(dst)); } - ggml_barrier(params->shared); + ggml_barrier(params->threadpool); const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; @@ -14717,7 +14822,7 @@ static void ggml_compute_forward_conv_transpose_1d_f32( // need to zero dst since we are accumulating into it memset(dst->data, 0, ggml_nbytes(dst)); } - ggml_barrier(params->shared); + ggml_barrier(params->threadpool); const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; @@ -15097,7 +15202,7 @@ static void ggml_compute_forward_conv_transpose_2d( memset(dst->data, 0, ggml_nbytes(dst)); } - ggml_barrier(params->shared); + ggml_barrier(params->threadpool); const int32_t stride = ggml_get_op_params_i32(dst, 0); @@ -15965,7 +16070,7 @@ static void ggml_compute_forward_flash_attn_back_f32( if (ith == 0) { memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3); } - ggml_barrier(params->shared); + ggml_barrier(params->threadpool); const int64_t elem_q = ggml_nelements(q); const int64_t elem_k = ggml_nelements(k); @@ -16656,7 +16761,7 @@ static void ggml_compute_forward_add_rel_pos_f32( if (params->ith == 0) { memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst)); } - ggml_barrier(params->shared); + ggml_barrier(params->threadpool); } // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359 @@ -16941,7 +17046,7 @@ static void ggml_compute_forward_cross_entropy_loss_f32( if (ith == 0) { memset(sums, 0, sizeof(float) * (nth + nth * nc)); } - ggml_barrier(params->shared); + ggml_barrier(params->threadpool); // rows per thread const int dr = (nr + nth - 1)/nth; @@ -16982,7 +17087,7 @@ static void ggml_compute_forward_cross_entropy_loss_f32( } #endif } - ggml_barrier(params->shared); + ggml_barrier(params->threadpool); if (ith == 0) { float * dp = (float *) dst->data; @@ -18795,65 +18900,6 @@ void ggml_graph_clear(struct ggml_cgraph * cgraph) { ggml_hash_set_reset(&cgraph->visited_hash_set); } -// -// thread data -// -// synchronization is done via busy loops -// I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops -// - -#ifdef __APPLE__ - -//#include -// -//typedef os_unfair_lock ggml_lock_t; -// -//#define ggml_lock_init(x) UNUSED(x) -//#define ggml_lock_destroy(x) UNUSED(x) -//#define ggml_lock_lock os_unfair_lock_lock -//#define ggml_lock_unlock os_unfair_lock_unlock -// -//#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT - -typedef int ggml_lock_t; - -#define ggml_lock_init(x) UNUSED(x) -#define ggml_lock_destroy(x) UNUSED(x) -#define ggml_lock_lock(x) UNUSED(x) -#define ggml_lock_unlock(x) UNUSED(x) - -#define GGML_LOCK_INITIALIZER 0 - -#define ggml_thread_create pthread_create -#define ggml_thread_join pthread_join - -#else - -//typedef pthread_spinlock_t ggml_lock_t; - -//#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE) -//#define ggml_lock_destroy pthread_spin_destroy -//#define ggml_lock_lock pthread_spin_lock -//#define ggml_lock_unlock pthread_spin_unlock - -typedef int ggml_lock_t; - -#define ggml_lock_init(x) UNUSED(x) -#define ggml_lock_destroy(x) UNUSED(x) -#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64)) -#define ggml_lock_lock(x) _mm_pause() -#else -#define ggml_lock_lock(x) UNUSED(x) -#endif -#define ggml_lock_unlock(x) UNUSED(x) - -#define GGML_LOCK_INITIALIZER 0 - -#define ggml_thread_create pthread_create -#define ggml_thread_join pthread_join - -#endif - // Android's libc implementation "bionic" does not support setting affinity #if defined(__gnu_linux__) static void set_numa_thread_affinity(int thread_n) { @@ -19134,9 +19180,268 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) { return n_tasks; } -struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) { +static thread_ret_t ggml_graph_compute_secondary_thread(void* data); + +#if defined(_WIN32) +#include "windows.h" + +// TODO: support > 64 CPUs +bool ggml_thread_apply_affinity(bool * mask) { + HANDLE h = GetCurrentThread(); + uint64_t bitmask = 0ULL; + + assert(GGML_MAX_N_THREADS >= 64); + + for (int32_t i = 0; i < 8; i++) { + int32_t idx = i * 8; + uint8_t val = 0; + val |= mask[idx + 0] << 0; + val |= mask[idx + 1] << 1; + val |= mask[idx + 2] << 2; + val |= mask[idx + 3] << 3; + val |= mask[idx + 4] << 4; + val |= mask[idx + 5] << 5; + val |= mask[idx + 6] << 6; + val |= mask[idx + 7] << 7; + bitmask |= (uint64_t)val << idx; + } + + for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) { + if (mask[i]) { + fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n"); + break; + } + } + + DWORD_PTR m = (DWORD_PTR)bitmask; + + m = SetThreadAffinityMask(h, m); + + return m != 0; +} + +static bool ggml_thread_apply_priority(int32_t prio) { + // Note that on Windows the Process Priority Class must be updated in order to set Thread priority. + // This is up to the applications. + DWORD p = THREAD_PRIORITY_NORMAL; + switch (prio) { + case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break; + case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break; + case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break; + case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break; + } + + if (prio == GGML_SCHED_PRIO_NORMAL) { + // Keep inherited policy/priority + return true; + } + + if (!SetThreadPriority(GetCurrentThread(), p)) { + fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n", prio, (int) GetLastError()); + return false; + } + + return true; +} + +#elif defined(__APPLE__) +#include +#include + +static bool ggml_thread_apply_affinity(const bool * mask) { + // Not supported on Apple platforms + UNUSED(mask); + return true; +} + +static bool ggml_thread_apply_priority(int32_t prio) { + struct sched_param p; + int32_t policy = SCHED_OTHER; + switch (prio) { + case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break; + case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break; + case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break; + case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break; + } + + if (prio == GGML_SCHED_PRIO_NORMAL) { + // Keep inherited policy/priority + return true; + } + + int32_t err = pthread_setschedparam(pthread_self(), policy, &p); + if (err != 0) { + fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err); + return false; + } + + return true; +} + +#else // posix? + +static bool ggml_thread_apply_affinity(const bool * mask) { + cpu_set_t cpuset; + int err; + + CPU_ZERO(&cpuset); + + for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) { + if (mask[i]) { + GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n", pthread_self(), i); + CPU_SET(i, &cpuset); + } + } + +#ifdef __ANDROID__ + err = sched_setaffinity(0, sizeof(cpuset), &cpuset); + if (err < 0) { + err = errno; + } +#else + err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset); +#endif + if (err != 0) { + fprintf(stderr, "warn: failed to set affinity mask 0x%llx : %s (%d)\n", (unsigned long long)mask, strerror(err), err); + return false; + } + + return true; +} + +static bool ggml_thread_apply_priority(int32_t prio) { + struct sched_param p; + int32_t policy = SCHED_OTHER; + switch (prio) { + case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break; + case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break; + case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break; + case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break; + } + + if (prio == GGML_SCHED_PRIO_NORMAL) { + // Keep inherited policy/priority + return true; + } + + int32_t err = pthread_setschedparam(pthread_self(), policy, &p); + if (err != 0) { + fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err); + return false; + } + + return true; +} + +#endif + +static bool ggml_thread_cpumask_is_valid(const bool * mask) { + for (int i = 0; i < GGML_MAX_N_THREADS; i++) { + if (mask[i]) { return true; } + } + return false; +} + +static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) { + if (!strict) { + memcpy(local_mask, global_mask, GGML_MAX_N_THREADS); + return; + } else { + memset(local_mask, 0, GGML_MAX_N_THREADS); + int32_t base_idx = *iter; + for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) { + int32_t idx = base_idx + i; + if (idx >= GGML_MAX_N_THREADS) { + // Just a cheaper modulo + idx -= GGML_MAX_N_THREADS; + } + if (global_mask[idx]) { + local_mask[idx] = 1; + *iter = idx + 1; + return; + } + } + } +} + +void ggml_threadpool_free(struct ggml_threadpool* threadpool) { + if (!threadpool) return; + +#ifndef GGML_USE_OPENMP + struct ggml_compute_state* workers = threadpool->workers; + const int n_threads = threadpool->n_threads_max; + + ggml_mutex_lock(&threadpool->mutex); + + threadpool->stop = true; + threadpool->pause = false; + + ggml_cond_broadcast(&threadpool->cond); + ggml_mutex_unlock(&threadpool->mutex); + + for (int j = 1; j < n_threads; j++) { + int32_t rc = ggml_thread_join(workers[j].thrd, NULL); + GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED); + UNUSED(rc); + } + + ggml_mutex_destroy(&threadpool->mutex); + ggml_cond_destroy(&threadpool->cond); +#endif // GGML_USE_OPENMP + + GGML_ALIGNED_FREE(threadpool->workers); + GGML_ALIGNED_FREE(threadpool); +} + +#ifndef GGML_USE_OPENMP +// pause/resume must be called under mutex +static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) { + GGML_PRINT_DEBUG("Pausing threadpool\n"); + threadpool->pause = true; + ggml_cond_broadcast(&threadpool->cond); +} + +static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) { + GGML_PRINT_DEBUG("Resuming threadpool\n"); + threadpool->pause = false; + ggml_cond_broadcast(&threadpool->cond); +} +#endif + +void ggml_threadpool_pause(struct ggml_threadpool * threadpool) { +#ifndef GGML_USE_OPENMP + ggml_mutex_lock(&threadpool->mutex); + if (!threadpool->pause) { + ggml_threadpool_pause_locked(threadpool); + } + ggml_mutex_unlock(&threadpool->mutex); +#else + UNUSED(threadpool); +#endif +} + +void ggml_threadpool_resume(struct ggml_threadpool * threadpool) { +#ifndef GGML_USE_OPENMP + ggml_mutex_lock(&threadpool->mutex); + if (threadpool->pause) { + ggml_threadpool_resume_locked(threadpool); + } + ggml_mutex_unlock(&threadpool->mutex); +#else + UNUSED(threadpool); +#endif +} + +struct ggml_cplan ggml_graph_plan( + const struct ggml_cgraph * cgraph, + int n_threads, + struct ggml_threadpool * threadpool) { + + if (threadpool == NULL) { + GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads); + } if (n_threads <= 0) { - n_threads = GGML_DEFAULT_N_THREADS; + n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS; } size_t work_size = 0; @@ -19292,12 +19597,13 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa } if (work_size > 0) { - work_size += CACHE_LINE_SIZE*(n_threads - 1); + work_size += CACHE_LINE_SIZE*(n_threads); } - cplan.n_threads = MIN(max_tasks, n_threads); - cplan.work_size = work_size; - cplan.work_data = NULL; + cplan.threadpool = threadpool; + cplan.n_threads = MIN(max_tasks, n_threads); + cplan.work_size = work_size; + cplan.work_data = NULL; return cplan; } @@ -19305,17 +19611,17 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa static thread_ret_t ggml_graph_compute_thread(void * data) { struct ggml_compute_state * state = (struct ggml_compute_state *) data; - const struct ggml_cgraph * cgraph = state->shared->cgraph; - const struct ggml_cplan * cplan = state->shared->cplan; + const struct ggml_cgraph * cgraph = state->threadpool->cgraph; + const struct ggml_cplan * cplan = state->threadpool->cplan; set_numa_thread_affinity(state->ith); struct ggml_compute_params params = { - /*.ith =*/ state->ith, - /*.nth =*/ state->shared->n_threads, - /*.wsize =*/ cplan->work_size, - /*.wdata =*/ cplan->work_data, - /*.shared=*/ state->shared, + /*.ith =*/ state->ith, + /*.nth =*/ state->threadpool->n_threads_cur, + /*.wsize =*/ cplan->work_size, + /*.wdata =*/ cplan->work_data, + /*.threadpool=*/ state->threadpool, }; for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) { @@ -19324,12 +19630,12 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { ggml_compute_forward(¶ms, node); if (state->ith == 0 && cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) { - state->shared->ec = GGML_STATUS_ABORTED; + state->threadpool->ec = GGML_STATUS_ABORTED; } - ggml_barrier(state->shared); + ggml_barrier(state->threadpool); - if (state->shared->ec != GGML_STATUS_SUCCESS) { + if (state->threadpool->ec != GGML_STATUS_SUCCESS) { break; } } @@ -19337,24 +19643,243 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { return 0; } +#ifndef GGML_USE_OPENMP + +static inline bool ggml_graph_compute_ready(struct ggml_compute_state * state) { + struct ggml_threadpool * threadpool = state->threadpool; + + if (state->pending || threadpool->stop || threadpool->pause) { return true; } + + // check for new graph/work + int new_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed); + if (new_graph != state->last_graph) { + state->pending = (state->ith < threadpool->n_threads_cur); + state->last_graph = new_graph; + } + + return state->pending; +} + +static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) { + struct ggml_threadpool * threadpool = state->threadpool; + + // This seems to make 0 ... 100 a decent range for polling level across modern processors. + // Perhaps, we can adjust it dynamically based on load and things. + const uint64_t n_rounds = 1024UL * 128 * threadpool->poll; + + for (uint64_t i=0; !ggml_graph_compute_ready(state) && ipending; +} + +static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) { + struct ggml_threadpool * threadpool = state->threadpool; + + if (ggml_graph_compute_poll_for_work(state)) { + return state->pending; + } + + ggml_mutex_lock_shared(&threadpool->mutex); + while (!ggml_graph_compute_ready(state)) { + // No new work. Wait for the signal. + GGML_PRINT_DEBUG("thread #%d waiting for work\n", state->ith); + ggml_cond_wait(&threadpool->cond, &threadpool->mutex); + } + ggml_mutex_unlock_shared(&threadpool->mutex); + + return state->pending; +} + +static thread_ret_t ggml_graph_compute_secondary_thread(void* data) { + struct ggml_compute_state * state = (struct ggml_compute_state *) data; + struct ggml_threadpool * threadpool = state->threadpool; + + ggml_thread_apply_priority(threadpool->prio); + if (ggml_thread_cpumask_is_valid(state->cpumask)) { + ggml_thread_apply_affinity(state->cpumask); + } + + while (true) { + // Check if we need to sleep + while (threadpool->pause) { + GGML_PRINT_DEBUG("thread #%d inside pause loop\n", state->ith); + ggml_mutex_lock_shared(&threadpool->mutex); + if (threadpool->pause) { + ggml_cond_wait(&threadpool->cond, &threadpool->mutex); + } + GGML_PRINT_DEBUG("thread #%d resuming after wait\n", state->ith); + ggml_mutex_unlock_shared(&threadpool->mutex); + } + + // This needs to be checked for after the cond_wait + if (threadpool->stop) break; + + // Check if there is new work + // The main thread is the only one that can dispatch new work + + ggml_graph_compute_check_for_work(state); + if (state->pending) { + state->pending = false; + + ggml_graph_compute_thread(state); + } + } + + return (thread_ret_t) 0; +} + +// Start processing new graph +static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool) +{ + // always take the mutex here because the worker threads are doing hybrid poll/wait + + ggml_mutex_lock(&threadpool->mutex); + + atomic_fetch_add_explicit(&threadpool->n_graph, 1, memory_order_relaxed); + + if (threadpool->pause) { + // Update main thread prio and affinity to match the threadpool settings + ggml_thread_apply_priority(threadpool->prio); + if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) { + ggml_thread_apply_affinity(threadpool->workers[0].cpumask); + } + + // resume does cond broadcast + ggml_threadpool_resume_locked(threadpool); + } else { + ggml_cond_broadcast(&threadpool->cond); + } + + ggml_mutex_unlock(&threadpool->mutex); +} + +#endif // GGML_USE_OPENMP + +void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) { + p->n_threads = n_threads; + p->prio = 0; // default priority (usually means normal or inherited) + p->poll = 50; // hybrid-polling enabled + p->strict_cpu = false; // no strict placement (all threads share same cpumask) + p->paused = false; // threads are ready to go + memset(p->cpumask, 0, GGML_MAX_N_THREADS); // all-zero means use the default affinity (usually inherited) +} + +struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) { + struct ggml_threadpool_params p; + ggml_threadpool_params_init(&p, n_threads); + return p; +} + +bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) { + if (p0->n_threads != p1->n_threads ) return false; + if (p0->prio != p1->prio ) return false; + if (p0->poll != p1->poll ) return false; + if (p0->strict_cpu != p1->strict_cpu ) return false; + return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0; +} + +static struct ggml_threadpool * ggml_threadpool_new_impl( + struct ggml_threadpool_params * tpp, + struct ggml_cgraph * cgraph, + struct ggml_cplan * cplan) { + + struct ggml_threadpool * threadpool = + GGML_ALIGNED_MALLOC(sizeof(struct ggml_threadpool)); + { + threadpool->cgraph = cgraph; + threadpool->cplan = cplan; + threadpool->n_graph = 0; + threadpool->n_barrier = 0; + threadpool->n_barrier_passed = 0; + threadpool->current_chunk = 0; + threadpool->stop = false; + threadpool->pause = tpp->paused; + threadpool->workers = NULL; + threadpool->n_threads_max = tpp->n_threads; + threadpool->n_threads_cur = tpp->n_threads; + threadpool->poll = tpp->poll; + threadpool->prio = tpp->prio; + threadpool->ec = GGML_STATUS_SUCCESS; + } + + // Allocate and init workers state + const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads; + struct ggml_compute_state * workers = GGML_ALIGNED_MALLOC(workers_size); + + memset(workers, 0, workers_size); + for (int j = 0; j < tpp->n_threads; j++) { + workers[j].threadpool = threadpool; + workers[j].ith = j; + } + + threadpool->workers = workers; + +#ifndef GGML_USE_OPENMP + ggml_mutex_init(&threadpool->mutex); + ggml_cond_init(&threadpool->cond); + + // Spin the threads for all workers, and update CPU placements. + // Place the main thread last (towards the higher numbered CPU cores). + + int32_t cpumask_iter = 0; + + for (int j = 1; j < tpp->n_threads; j++) { + ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter); + + int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]); + GGML_ASSERT(rc == 0); + } + + ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter); + + if (!threadpool->pause) { + // Update main thread prio and affinity at the start, otherwise we'll do it in resume + ggml_thread_apply_priority(threadpool->prio); + if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) { + ggml_thread_apply_affinity(threadpool->workers[0].cpumask); + } + } +#endif // GGML_USE_OPENMP + + return threadpool; +} + +struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) { + return ggml_threadpool_new_impl(tpp, NULL, NULL); +} + enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) { GGML_ASSERT(cplan); GGML_ASSERT(cplan->n_threads > 0); GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL); - int n_threads = cplan->n_threads; + int n_threads = cplan->n_threads; + struct ggml_threadpool * threadpool = cplan->threadpool; - struct ggml_compute_state_shared state_shared = { - /*.cgraph =*/ cgraph, - /*.cgraph_plan =*/ cplan, - /*.n_threads =*/ n_threads, - /*.n_barrier =*/ 0, - /*.n_barrier_passed =*/ 0, - /*.abort_callback =*/ NULL, - /*.abort_callback_data =*/ NULL, - /*.current_chunk =*/ 0, - /*.ec =*/ GGML_STATUS_SUCCESS, - }; + bool disposable_threadpool = false; + + if (threadpool == NULL) { + GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads); + disposable_threadpool = true; + + struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads); + threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan); + } else { + // Reset some of the parameters that need resetting + // No worker threads should be accessing the parameters below at this stage + threadpool->cgraph = cgraph; + threadpool->cplan = cplan; + threadpool->n_threads_cur = n_threads; + threadpool->current_chunk = 0; + threadpool->ec = GGML_STATUS_SUCCESS; + } + + if (n_threads > threadpool->n_threads_max) { + GGML_PRINT("WARNING: cplan is requesting more threads than the threadpool contains. Expect a bad time!\n"); + } #ifdef GGML_USE_OPENMP if (n_threads > 1) { @@ -19364,63 +19889,36 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl { // update the number of threads from the actual number of threads that we got from OpenMP n_threads = omp_get_num_threads(); - state_shared.n_threads = n_threads; + threadpool->n_threads_cur = n_threads; } - struct ggml_compute_state worker = { - .thrd = 0, - .ith = omp_get_thread_num(), - .shared = &state_shared, - }; - ggml_graph_compute_thread(&worker); + ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]); } } else { - struct ggml_compute_state worker = { - .thrd = 0, - .ith = 0, - .shared = &state_shared, - }; - ggml_graph_compute_thread(&worker); + ggml_graph_compute_thread(&threadpool->workers[0]); } #else - struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads); + // Kick all threads to start the new graph + ggml_graph_compute_kickoff(threadpool); - for (int j = 0; j < n_threads; ++j) { - workers[j] = (struct ggml_compute_state) { - .thrd = 0, - .ith = j, - .shared = &state_shared, - }; - } - - // create thread pool - for (int j = 1; j < n_threads; ++j) { - const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]); - GGML_ASSERT(rc == 0); - UNUSED(rc); - } - - // this is a work thread too - ggml_graph_compute_thread(&workers[0]); - - // join or kill thread pool - if (n_threads > 1) { - for (int j = 1; j < n_threads; j++) { - const int rc = ggml_thread_join(workers[j].thrd, NULL); - GGML_ASSERT(rc == 0); - UNUSED(rc); - } - } + // This is a work thread too + ggml_graph_compute_thread(&threadpool->workers[0]); #endif // don't leave affinity set on the main thread clear_numa_thread_affinity(); - return state_shared.ec; + enum ggml_status ret = threadpool->ec; + + if (disposable_threadpool) { + ggml_threadpool_free(threadpool); + } + + return ret; } enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) { - struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads); + struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL); struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size); @@ -20236,7 +20734,7 @@ static enum ggml_opt_result ggml_opt_adam( float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values - struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads); + struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL); struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size); cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs; @@ -20583,7 +21081,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( opt->iter = iter; } - struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads); + struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL); struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size); cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;