diff --git a/examples/talk-llama/llama.cpp b/examples/talk-llama/llama.cpp index acd9be0..893bcdb 100644 --- a/examples/talk-llama/llama.cpp +++ b/examples/talk-llama/llama.cpp @@ -68,10 +68,12 @@ #include #include #include +#include #include #include #include #include +#include #include #include #include @@ -1550,8 +1552,9 @@ static const size_t MiB = 1024*kiB; static const size_t GiB = 1024*MiB; struct llama_hparams { - bool vocab_only; - bool rope_finetuned; + bool vocab_only; + bool rope_finetuned; + uint32_t n_vocab; uint32_t n_ctx_train; // context size the model was trained on uint32_t n_embd; @@ -1580,7 +1583,8 @@ struct llama_hparams { bool causal_attn = true; bool need_kq_pos = false; - uint32_t pooling_type = LLAMA_POOLING_TYPE_NONE; + enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; + enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; bool operator!=(const llama_hparams & other) const { if (this->vocab_only != other.vocab_only) return true; @@ -1639,6 +1643,7 @@ struct llama_cparams { float yarn_attn_factor; float yarn_beta_fast; float yarn_beta_slow; + float defrag_thold; bool mul_mat_q; bool offload_kqv; @@ -1707,11 +1712,20 @@ struct llama_kv_cell { bool has_seq_id(const llama_seq_id & id) const { return seq_id.find(id) != seq_id.end(); } + + bool is_empty() const { + return seq_id.empty(); + } + + bool is_same_seq(const llama_kv_cell & other) const { + return seq_id == other.seq_id; + } }; // ring-buffer of cached KV data struct llama_kv_cache { bool has_shift = false; + bool do_defrag = false; // Note: The value of head isn't only used to optimize searching // for a free KV slot. llama_decode_internal also uses it, so it @@ -1723,6 +1737,9 @@ struct llama_kv_cache { // computed before each graph build uint32_t n = 0; + ggml_type type_k = GGML_TYPE_F16; + ggml_type type_v = GGML_TYPE_F16; + std::vector cells; std::vector k_l; // per layer @@ -1958,8 +1975,8 @@ struct llama_context { static bool llama_kv_cache_init( struct llama_kv_cache & cache, const llama_model & model, - ggml_type ktype, - ggml_type vtype, + ggml_type type_k, + ggml_type type_v, uint32_t n_ctx, bool offload) { const struct llama_hparams & hparams = model.hparams; @@ -1974,6 +1991,9 @@ static bool llama_kv_cache_init( cache.size = n_ctx; cache.used = 0; + cache.type_k = type_k; + cache.type_v = type_v; + cache.cells.clear(); cache.cells.resize(n_ctx); @@ -2014,8 +2034,8 @@ static bool llama_kv_cache_init( for (int i = 0; i < (int) n_layer; i++) { struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front(); - ggml_tensor * k = ggml_new_tensor_1d(ctx, ktype, n_embd_k_gqa*n_ctx); - ggml_tensor * v = ggml_new_tensor_1d(ctx, vtype, n_embd_v_gqa*n_ctx); + ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*n_ctx); + ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*n_ctx); ggml_format_name(k, "cache_k_l%d", i); ggml_format_name(v, "cache_v_l%d", i); cache.k_l.push_back(k); @@ -2099,7 +2119,7 @@ static bool llama_kv_cache_find_slot( // find how many cells are currently in use static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) { for (uint32_t i = cache.size - 1; i > 0; --i) { - if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) { + if (cache.cells[i].pos >= 0 && !cache.cells[i].is_empty()) { return i + 1; } } @@ -2135,7 +2155,7 @@ static void llama_kv_cache_seq_rm( } else { continue; } - if (cache.cells[i].seq_id.empty()) { + if (cache.cells[i].is_empty()) { // keep count of the number of used cells if (cache.cells[i].pos >= 0) cache.used--; @@ -2186,7 +2206,7 @@ static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id if (new_head != cache.size && new_head < cache.head) cache.head = new_head; } -static void llama_kv_cache_seq_shift( +static void llama_kv_cache_seq_add( struct llama_kv_cache & cache, llama_seq_id seq_id, llama_pos p0, @@ -2204,10 +2224,14 @@ static void llama_kv_cache_seq_shift( cache.cells[i].delta += delta; if (cache.cells[i].pos < 0) { - if (!cache.cells[i].seq_id.empty()) cache.used--; + if (!cache.cells[i].is_empty()) { + cache.used--; + } cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); - if (new_head == cache.size) new_head = i; + if (new_head == cache.size) { + new_head = i; + } } } } @@ -2239,6 +2263,22 @@ static void llama_kv_cache_seq_div( } } +static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) { + llama_pos result = 0; + + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].has_seq_id(seq_id)) { + result = std::max(result, cache.cells[i].pos); + } + } + + return result; +} + +static void llama_kv_cache_defrag(struct llama_kv_cache & cache) { + cache.do_defrag = true; +} + // // model loading and saving // @@ -2310,7 +2350,7 @@ namespace GGUFMeta { } }; - struct ArrayInfo{ + struct ArrayInfo { const gguf_type gt; const size_t length; const void * data; @@ -2329,7 +2369,7 @@ namespace GGUFMeta { }; template - class GKV: public GKV_Base { + class GKV : public GKV_Base { GKV() = delete; public: @@ -2352,39 +2392,39 @@ namespace GGUFMeta { return "unknown"; } - static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override *override) { - if (!override) { return false; } - if (override->tag == expected_type) { + static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) { + if (!ovrd) { return false; } + if (ovrd->tag == expected_type) { LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ", - __func__, override_type_to_str(override->tag), override->key); - switch (override->tag) { + __func__, override_type_to_str(ovrd->tag), ovrd->key); + switch (ovrd->tag) { case LLAMA_KV_OVERRIDE_TYPE_BOOL: { - LLAMA_LOG_INFO("%s\n", override->bool_value ? "true" : "false"); + LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false"); } break; case LLAMA_KV_OVERRIDE_TYPE_INT: { - LLAMA_LOG_INFO("%" PRId64 "\n", override->int_value); + LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value); } break; case LLAMA_KV_OVERRIDE_TYPE_FLOAT: { - LLAMA_LOG_INFO("%.6f\n", override->float_value); + LLAMA_LOG_INFO("%.6f\n", ovrd->float_value); } break; default: // Shouldn't be possible to end up here, but just in case... throw std::runtime_error( format("Unsupported attempt to override %s type for metadata key %s\n", - override_type_to_str(override->tag), override->key)); + override_type_to_str(ovrd->tag), ovrd->key)); } return true; } LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n", - __func__, override->key, override_type_to_str(expected_type), override_type_to_str(override->tag)); + __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag)); return false; } template static typename std::enable_if::value, bool>::type - try_override(OT & target, const struct llama_model_kv_override *override) { - if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, override)) { - target = override->bool_value; + try_override(OT & target, const struct llama_model_kv_override * ovrd) { + if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) { + target = ovrd->bool_value; return true; } return false; @@ -2392,9 +2432,9 @@ namespace GGUFMeta { template static typename std::enable_if::value && std::is_integral::value, bool>::type - try_override(OT & target, const struct llama_model_kv_override *override) { - if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, override)) { - target = override->int_value; + try_override(OT & target, const struct llama_model_kv_override * ovrd) { + if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) { + target = ovrd->int_value; return true; } return false; @@ -2402,9 +2442,9 @@ namespace GGUFMeta { template static typename std::enable_if::value, bool>::type - try_override(T & target, const struct llama_model_kv_override *override) { - if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, override)) { - target = override->float_value; + try_override(T & target, const struct llama_model_kv_override * ovrd) { + if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) { + target = ovrd->float_value; return true; } return false; @@ -2412,17 +2452,17 @@ namespace GGUFMeta { template static typename std::enable_if::value, bool>::type - try_override(T & target, const struct llama_model_kv_override *override) { + try_override(T & target, const struct llama_model_kv_override * ovrd) { (void)target; - (void)override; - if (!override) { return false; } + (void)ovrd; + if (!ovrd) { return false; } // Currently, we should never end up here so it would be a bug if we do. throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n", - override ? override->key : "NULL")); + ovrd ? ovrd->key : "NULL")); } - static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override *override = nullptr) { - if (try_override(target, override)) { + static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) { + if (try_override(target, ovrd)) { return true; } if (k < 0) { return false; } @@ -2430,12 +2470,12 @@ namespace GGUFMeta { return true; } - static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override *override = nullptr) { - return set(ctx, gguf_find_key(ctx, key), target, override); + static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { + return set(ctx, gguf_find_key(ctx, key), target, ovrd); } - static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override *override = nullptr) { - return set(ctx, key.c_str(), target, override); + static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { + return set(ctx, key.c_str(), target, ovrd); } }; } @@ -2542,9 +2582,11 @@ struct llama_model_loader { case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break; case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break; case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break; + case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break; case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break; + case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break; case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break; default: { @@ -2846,6 +2888,15 @@ struct llama_model_loader { } }; +template<> +bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) { + uint32_t tmp; + const bool found = get_key(kid, tmp, required); + result = (enum llama_pooling_type) tmp; + return found; +} + + // // load LLaMA models // @@ -2887,10 +2938,13 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K"; case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw"; - case LLAMA_FTYPE_MOSTLY_Q3_K_XS:return "Q3_K - Extra small"; + case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw"; @@ -2926,16 +2980,16 @@ static const char * llama_model_type_name(e_model type) { default: return "?B"; } } + static const char * llama_model_vocab_type_name(enum llama_vocab_type type){ switch (type) { - case LLAMA_VOCAB_TYPE_SPM: return "SPM"; - case LLAMA_VOCAB_TYPE_BPE: return "BPE"; - case LLAMA_VOCAB_TYPE_WPM: return "WPM"; - default: return "unknown"; + case LLAMA_VOCAB_TYPE_SPM: return "SPM"; + case LLAMA_VOCAB_TYPE_BPE: return "BPE"; + case LLAMA_VOCAB_TYPE_WPM: return "WPM"; + default: return "unknown"; } } - static void llm_load_arch(llama_model_loader & ml, llama_model & model) { model.arch = ml.get_arch(); if (model.arch == LLM_ARCH_UNKNOWN) { @@ -3112,10 +3166,10 @@ static void llm_load_hparams( } break; case LLM_ARCH_BERT: { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); - ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); + ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); switch (hparams.n_layer) { case 3: @@ -3133,10 +3187,10 @@ static void llm_load_hparams( } break; case LLM_ARCH_NOMIC_BERT: { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); - ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); + ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); if (hparams.n_layer == 12 && hparams.n_embd == 768) { model.type = e_model::MODEL_137M; @@ -3275,6 +3329,8 @@ static void llm_load_hparams( if (hparams.f_max_alibi_bias > 0.0f) { hparams.need_kq_pos = true; } + + hparams.rope_type = llama_rope_type(&model); } // TODO: This should probably be in llama.h @@ -3577,6 +3633,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff); LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert); LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used); + LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type); + LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type); LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type); LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train); LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train); @@ -4598,12 +4656,6 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam using llm_build_cb = std::function; -enum llm_rope_type { - LLM_ROPE, - LLM_ROPE_NEOX, - LLM_ROPE_GLM, -}; - enum llm_ffn_op_type { LLM_FFN_SILU, LLM_FFN_GELU, @@ -4649,55 +4701,6 @@ static struct ggml_tensor * llm_build_inp_embd( return inpL; } -// Persimmon: n_rot = n_embd_head_k/2 -// Other: n_rot = n_embd_head_k -static void llm_build_k_shift( - struct ggml_context * ctx, - const llama_hparams & hparams, - const llama_cparams & cparams, - const llama_kv_cache & kv, - struct ggml_cgraph * graph, - struct ggml_tensor * K_shift, - llm_rope_type type, - int64_t n_ctx, - float freq_base, - float freq_scale, - const llm_build_cb & cb) { - const int64_t n_layer = hparams.n_layer; - const int64_t n_head_kv = hparams.n_head_kv; - const int64_t n_embd_head_k = hparams.n_embd_head_k; - const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); - const int32_t n_rot = hparams.n_rot; - const int32_t n_orig_ctx = cparams.n_yarn_orig_ctx; - const float ext_factor = cparams.yarn_ext_factor; - const float attn_factor = cparams.yarn_attn_factor; - const float beta_fast = cparams.yarn_beta_fast; - const float beta_slow = cparams.yarn_beta_slow; - - int rope_type = 0; - - switch (type) { - case LLM_ROPE: rope_type = 0; break; - case LLM_ROPE_NEOX: rope_type = 2; break; - case LLM_ROPE_GLM: rope_type = 4; break; - } - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * tmp = - // we rotate only the first n_rot dimensions - ggml_rope_custom_inplace(ctx, - ggml_view_3d(ctx, kv.k_l[il], - n_embd_head_k, n_head_kv, n_ctx, - ggml_row_size(kv.k_l[il]->type, n_embd_head_k), - ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa), - 0), - K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow); - cb(tmp, "K_shifted", il); - ggml_build_forward_expand(graph, tmp); - } -} - static void llm_build_kv_store( struct ggml_context * ctx, const llama_hparams & hparams, @@ -4899,8 +4902,8 @@ static struct ggml_tensor * llm_build_kqv( ggml_mul_mat_set_prec(kq, GGML_PREC_F32); } -#if defined(GGML_USE_VULKAN) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_SYCL) -#pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Vulkan, Kompute, and SYCL") +#if defined(GGML_USE_VULKAN) || defined(GGML_USE_KOMPUTE) +#pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Vulkan, and Kompute") #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024") #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488") if (hparams.f_max_alibi_bias > 0.0f) { @@ -5001,6 +5004,7 @@ struct llm_build_context { const int64_t n_embd; const int64_t n_layer; + const int64_t n_rot; const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train) const int64_t n_head; const int64_t n_head_kv; @@ -5025,8 +5029,8 @@ struct llm_build_context { const int32_t kv_head; // index of where we store new KV data in the cache const int32_t n_orig_ctx; - const bool do_rope_shift; - const uint32_t pooling_type; + const enum llama_pooling_type pooling_type; + const enum llama_rope_type rope_type; const llm_build_cb & cb; @@ -5048,6 +5052,7 @@ struct llm_build_context { kv_self (lctx.kv_self), n_embd (hparams.n_embd), n_layer (hparams.n_layer), + n_rot (hparams.n_rot), n_ctx (cparams.n_ctx), n_head (hparams.n_head), n_head_kv (hparams.n_head_kv), @@ -5069,8 +5074,8 @@ struct llm_build_context { n_kv (worst_case ? n_ctx : kv_self.n), kv_head (worst_case ? n_ctx - n_tokens : kv_self.head), n_orig_ctx (cparams.n_yarn_orig_ctx), - do_rope_shift (worst_case || kv_self.has_shift), - pooling_type (cparams.do_pooling ? hparams.pooling_type : (uint32_t)LLAMA_POOLING_TYPE_NONE), + pooling_type (cparams.do_pooling ? hparams.pooling_type : LLAMA_POOLING_TYPE_NONE), + rope_type (hparams.rope_type), cb (cb), buf_compute_meta (lctx.buf_compute_meta) { // all initializations should be done in init() @@ -5093,6 +5098,76 @@ struct llm_build_context { } } + struct ggml_cgraph * build_k_shift() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * tmp = + // we rotate only the first n_rot dimensions + ggml_rope_custom_inplace(ctx0, + ggml_view_3d(ctx0, kv_self.k_l[il], + n_embd_head_k, n_head_kv, n_ctx, + ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k), + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), + 0), + lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(tmp, "K_shifted", il); + ggml_build_forward_expand(gf, tmp); + } + + return gf; + } + + struct ggml_cgraph * build_defrag(const std::vector & ids) { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + for (uint32_t i = 0; i < ids.size(); ++i) { + const uint32_t id = ids[i]; + + if (i == id || id == ids.size()) { + continue; + } + + uint32_t nm = 1; + + while (i + nm < ids.size() && ids[i + nm] == id + nm) { + nm++; + } + + for (int il = 0; il < n_layer; ++il) { + ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il], + n_embd_k_gqa, nm, + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i)); + + ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il], + n_embd_k_gqa, nm, + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id)); + + ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il], + nm, n_embd_v_gqa, + ggml_row_size(kv_self.v_l[il]->type, kv_self.size), + ggml_row_size(kv_self.v_l[il]->type, i)); + + ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il], + nm, n_embd_v_gqa, + ggml_row_size(kv_self.v_l[il]->type, kv_self.size), + ggml_row_size(kv_self.v_l[il]->type, id)); + + ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst)); + } + + i += nm - 1; + } + + //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes); + + return gf; + } + struct ggml_cgraph * build_llama() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); @@ -5114,11 +5189,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -5154,14 +5224,14 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -5302,11 +5372,6 @@ struct llm_build_context { struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0); cb(KQ_pos, "KQ_pos", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -5330,12 +5395,12 @@ struct llm_build_context { case MODEL_7B: Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); break; @@ -5420,11 +5485,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * attn_norm; @@ -5463,13 +5523,13 @@ struct llm_build_context { // using mode = 2 for neox mode Qcur = ggml_rope_custom( - ctx0, Qcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( - ctx0, Kcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -5639,10 +5699,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * residual = inpL; @@ -5700,7 +5756,7 @@ struct llm_build_context { // RoPE the first n_rot of q/k, pass the other half, and concat. struct ggml_tensor * qrot = ggml_view_3d( - ctx0, tmpq, hparams.n_rot, n_head, n_tokens, + ctx0, tmpq, n_rot, n_head, n_tokens, ggml_element_size(tmpq) * n_embd_head, ggml_element_size(tmpq) * n_embd_head * n_head, 0 @@ -5708,7 +5764,7 @@ struct llm_build_context { cb(qrot, "qrot", il); struct ggml_tensor * krot = ggml_view_3d( - ctx0, tmpk, hparams.n_rot, n_head, n_tokens, + ctx0, tmpk, n_rot, n_head, n_tokens, ggml_element_size(tmpk) * n_embd_head, ggml_element_size(tmpk) * n_embd_head * n_head, 0 @@ -5717,29 +5773,29 @@ struct llm_build_context { // get the second half of tmpq, e.g tmpq[n_rot:, :, :] struct ggml_tensor * qpass = ggml_view_3d( - ctx0, tmpq, hparams.n_rot, n_head, n_tokens, + ctx0, tmpq, n_rot, n_head, n_tokens, ggml_element_size(tmpq) * n_embd_head, ggml_element_size(tmpq) * n_embd_head * n_head, - ggml_element_size(tmpq) * hparams.n_rot + ggml_element_size(tmpq) * n_rot ); cb(qpass, "qpass", il); struct ggml_tensor * kpass = ggml_view_3d( - ctx0, tmpk, hparams.n_rot, n_head, n_tokens, + ctx0, tmpk, n_rot, n_head, n_tokens, ggml_element_size(tmpk) * n_embd_head, ggml_element_size(tmpk) * n_embd_head * n_head, - ggml_element_size(tmpk) * hparams.n_rot + ggml_element_size(tmpk) * n_rot ); cb(kpass, "kpass", il); struct ggml_tensor * qrotated = ggml_rope_custom( - ctx0, qrot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(qrotated, "qrotated", il); struct ggml_tensor * krotated = ggml_rope_custom( - ctx0, krot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(krotated, "krotated", il); @@ -5991,14 +6047,14 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -6287,11 +6343,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -6328,14 +6379,14 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -6410,11 +6461,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -6444,13 +6490,13 @@ struct llm_build_context { // using mode = 2 for neox mode Qcur = ggml_rope_custom( - ctx0, Qcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( - ctx0, Kcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -6524,11 +6570,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -6564,14 +6605,14 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -6645,11 +6686,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { attn_norm_output = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, @@ -6687,7 +6723,7 @@ struct llm_build_context { Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_custom( - ctx0, Qcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); @@ -6698,7 +6734,7 @@ struct llm_build_context { cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( - ctx0, Kcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -6767,11 +6803,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { // norm @@ -6795,14 +6826,14 @@ struct llm_build_context { cb(Vcur, "Vcur", il); Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, hparams.n_rot, n_head, n_tokens), inp_pos, - n_embd_head, 2, 0, n_orig_ctx, freq_base, freq_scale, + ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, + n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, hparams.n_rot, n_head_kv, n_tokens), inp_pos, - n_embd_head, 2, 0, n_orig_ctx, freq_base, freq_scale, + ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, + n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Kcur, "Kcur", il); @@ -6972,11 +7003,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, @@ -7002,14 +7028,14 @@ struct llm_build_context { struct ggml_tensor * Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); struct ggml_tensor * Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -7080,11 +7106,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -7120,14 +7141,14 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -7199,11 +7220,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -7239,14 +7255,14 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -7331,11 +7347,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -7371,14 +7382,14 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -7467,11 +7478,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { // norm @@ -7494,7 +7500,7 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, - n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); @@ -7503,7 +7509,7 @@ struct llm_build_context { Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, - n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Kcur, "Kcur", il); @@ -7556,6 +7562,40 @@ struct llm_build_context { } }; +static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) { + llama_batch dummy; + dummy.n_tokens = 0; + + llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { }; + + struct llm_build_context llm(lctx, dummy, cb, false); + + llm.init(); + + struct ggml_cgraph * result = llm.build_defrag(ids); + + llm.free(); + + return result; +} + +static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) { + llama_batch dummy; + dummy.n_tokens = 0; + + llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { }; + + struct llm_build_context llm(lctx, dummy, cb, false); + + llm.init(); + + struct ggml_cgraph * result = llm.build_k_shift(); + + llm.free(); + + return result; +} + static struct ggml_cgraph * llama_build_graph( llama_context & lctx, const llama_batch & batch, @@ -7675,6 +7715,20 @@ static struct ggml_cgraph * llama_build_graph( return result; } +static void llama_set_k_shift(llama_context & lctx) { + const auto & cparams = lctx.cparams; + + const int64_t n_ctx = cparams.n_ctx; + + assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer)); + + int32_t * data = (int32_t *) lctx.inp_K_shift->data; + + for (int i = 0; i < n_ctx; ++i) { + data[i] = lctx.kv_self.cells[i].delta; + } +} + static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { // // set input data @@ -7742,18 +7796,6 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { } } - if (kv_self.has_shift) { - const int64_t n_ctx = cparams.n_ctx; - - assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer)); - - int32_t * data = (int32_t *) lctx.inp_K_shift->data; - - for (int i = 0; i < n_ctx; ++i) { - data[i] = lctx.kv_self.cells[i].delta; - } - } - if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) { const int64_t n_tokens = batch.n_tokens; @@ -7798,6 +7840,34 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { } } +static void llama_graph_compute( + llama_context & lctx, + ggml_cgraph * gf, + int n_threads) { +#ifdef GGML_USE_MPI + const int64_t n_layer = lctx.model.hparams.n_layer; + ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer); +#endif + +#ifdef GGML_USE_METAL + if (ggml_backend_is_metal(lctx.backend_metal)) { + ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads); + } +#endif + + if (lctx.backend_cpu != nullptr) { + ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads); + } + + ggml_backend_sched_graph_compute(lctx.sched, gf); + + // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched)); + +#ifdef GGML_USE_MPI + ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer); +#endif +} + // decode a batch of tokens by evaluating the transformer // // - lctx: llama context @@ -7875,6 +7945,8 @@ static int llama_decode_internal( batch.seq_id = seq_id_arr.data(); } + llama_kv_cache_update(&lctx); + // if we have enough unused cells before the current head -> // better to start searching from the beginning of the cache, hoping to fill it if (kv_self.head > kv_self.used + 2*n_tokens) { @@ -7899,8 +7971,9 @@ static int llama_decode_internal( ggml_cgraph * gf = llama_build_graph(lctx, batch, false); // the output is always the last tensor in the graph - struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; + struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2]; + if (strcmp(res->name, "result_output") == 0) { // the embeddings could be the second to last tensor, or the third to last tensor if (strcmp(embeddings->name, "result_norm") != 0) { @@ -7927,40 +8000,12 @@ static int llama_decode_internal( n_threads = std::min(4, n_threads); } -#ifdef GGML_USE_MPI - const int64_t n_layer = hparams.n_layer; - ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer); -#endif - -#ifdef GGML_USE_METAL - if (ggml_backend_is_metal(lctx.backend_metal)) { - ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads); - } -#endif - - if (lctx.backend_cpu != nullptr) { - ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads); - } - llama_set_inputs(lctx, batch); - ggml_backend_sched_graph_compute(lctx.sched, gf); - - // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched)); - -#ifdef GGML_USE_MPI - ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer); -#endif + llama_graph_compute(lctx, gf, n_threads); // update the kv ring buffer { - if (kv_self.has_shift) { - kv_self.has_shift = false; - for (uint32_t i = 0; i < kv_self.size; ++i) { - kv_self.cells[i].delta = 0; - } - } - kv_self.head += n_tokens; // Ensure kv cache head points to a valid index. @@ -7969,6 +8014,18 @@ static int llama_decode_internal( } } + // decide if we need to defrag the kv cache + if (cparams.defrag_thold >= 0.0f) { + const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used + n_tokens)/float(kv_self.n) : 0.0f; + + // queue defragmentation for next llama_kv_cache_update + if (fragmentation > cparams.defrag_thold) { + //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation); + + llama_kv_cache_defrag(kv_self); + } + } + #ifdef GGML_PERF // print timing information per ggml operation (for debugging purposes) // requires GGML_PERF to be defined @@ -8056,6 +8113,245 @@ static int llama_decode_internal( return 0; } +// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache +static void llama_kv_cache_defrag_internal(struct llama_context & lctx) { + auto & kv_self = lctx.kv_self; + + const auto & hparams = lctx.model.hparams; + + const uint32_t n_layer = hparams.n_layer; + + const uint32_t n_kv = llama_kv_cache_cell_max(kv_self); + const uint32_t n_used = kv_self.used; + + assert(n_used <= n_kv); + + //const int64_t t_start = ggml_time_us(); + + // number of cells moved + uint32_t n_moves = 0; + + // determine which KV cells to move where + // + // cell i moves to ids[i] + // + // if ids[i] == i || ids[i] == n_kv, then cell i is not moved + // + std::vector ids(n_kv, n_kv); + + for (uint32_t i0 = 0; i0 < n_used; ++i0) { + const auto & cell0 = kv_self.cells[i0]; + + if (!cell0.is_empty()) { + ids[i0] = i0; + + continue; + } + + // found a hole - fill it with data from the end of the cache + + uint32_t nh = 1; + + // determine the size of the hole + while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) { + nh++; + } + + // each move requires 6*n_layer tensors (see build_defrag) + // - source view, destination view, copy operation + // - x2 for keys and values + // + if (6*(n_moves + nh)*n_layer >= LLAMA_MAX_NODES) { + // the graph is too big, we cannot move more cells + break; + } + + uint32_t nf = 0; + uint32_t is = n_kv - 1; + + // starting from the end, find nh non-empty cells + for (; is > i0; --is) { + const auto & cell1 = kv_self.cells[is]; + + if (cell1.is_empty() || ids[is] != n_kv) { + continue; + } + + // non-empty cell which is not yet moved + nf++; + + if (nf == nh) { + break; + } + } + + // this can only happen if `n_used` is not accurate, which would be a bug + GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh"); + + nf = 0; + + uint32_t i1 = is; + + // are we moving a continuous block of memory? + bool cont = false; + + // go back and move the nf cells to the hole + for (; i1 < n_kv; ++i1) { + auto & cell1 = kv_self.cells[i1]; + + if (cell1.is_empty() || ids[i1] != n_kv) { + cont = false; + continue; + } + + // this cell goes to (i0 + nf) + ids[i1] = i0 + nf; + + // move the cell meta data + kv_self.cells[i0 + nf] = cell1; + + // clear the old cell and move the head there + cell1 = llama_kv_cell(); + kv_self.head = n_used; + + if (!cont) { + n_moves++; + cont = true; + } + + nf++; + + if (nf == nh) { + break; + } + } + + //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh); + + i0 += nh - 1; + } + + if (n_moves == 0) { + return; + } + + //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves); + + //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer); + +#if 0 + // CPU defrag + // + // TODO: optimizations are possible: + // - multiple threads + // - avoid copying to the host memory when already there + // + // likely not worth the effort, as we have ggml_graph based defrag + // + + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + + const uint32_t kv_size = kv_self.size; + + std::vector buf_k; + std::vector buf_v; + + for (uint32_t il = 0; il < n_layer; ++il) { + const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); + const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size); + + const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); + const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size); + + buf_k.resize(k_size); + buf_v.resize(v_size); + + ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size()); + ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size()); + + // batch move [i, i+nm) to [id, id+nm) + // note: cells can move only to a lower index + for (uint32_t i = 0; i < n_kv; ++i) { + const uint32_t id = ids[i]; + + if (i == id || id == n_kv) { + continue; + } + + uint32_t nm = 1; + + while (i + nm < n_kv && ids[i + nm] == id + nm) { + nm++; + } + + // move keys + { + const int64_t os = i*k_size_row; + const int64_t od = id*k_size_row; + + memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row); + } + + // move values (note: they are transposed) + { + const int64_t os = i; + const int64_t od = id; + + for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { + memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el); + } + } + + i += nm - 1; + } + + ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size()); + ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size()); + } +#else + // ggml_graph defrag + + ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids); + + llama_graph_compute(lctx, gf, lctx.cparams.n_threads); +#endif + + //const int64_t t_end = ggml_time_us(); + + //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0); +} + +static void llama_kv_cache_update_internal(struct llama_context & lctx) { + // apply K-shift if needed + if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) { + llama_set_k_shift(lctx); + + { + ggml_cgraph * gf = llama_build_graph_k_shift(lctx); + + llama_graph_compute(lctx, gf, lctx.cparams.n_threads); + } + + { + auto & kv_self = lctx.kv_self; + + kv_self.has_shift = false; + + for (uint32_t i = 0; i < kv_self.size; ++i) { + kv_self.cells[i].delta = 0; + } + } + } + + // defragment the KV cache if needed + if (lctx.kv_self.do_defrag) { + llama_kv_cache_defrag_internal(lctx); + + lctx.kv_self.do_defrag = false; + } +} + // // tokenizer // @@ -8647,37 +8943,46 @@ struct llm_tokenizer_wpm { } std::vector preprocess(const std::string & text) { - std::string ori_str = normalize(text); - uint64_t ori_size = ori_str.size(); + // normalalization form D + std::vector codepoints = codepoints_from_utf8(text); + std::vector nfd_codepoints; + for (uint32_t code : codepoints) { + auto it = nfd_map.find(code); + if (it != nfd_map.end()) { + for (uint32_t c : it->second) { + nfd_codepoints.push_back(c); + } + } else { + nfd_codepoints.push_back(code); + } + } - // single punct / single symbol / single digit - // baseline: add whitespace on the left and right of punct and chinese characters - std::vector words; + // strip accents, strip control, uniformize whitespace, + // to lowercase, pad chinese characters, pad punctuation std::string new_str = ""; - uint64_t i = 0; - while (i < ori_size) { - int utf_char_len = utf8_len(ori_str[i]); - if ((utf_char_len == 1) && ispunct(ori_str[i])) { - new_str += " "; - new_str += ori_str[i]; - new_str += " "; - i += 1; + for (uint32_t code : nfd_codepoints) { + int type = codepoint_type(code); + if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) { + continue; } - else if ((utf_char_len == 3) && is_chinese_char(ori_str.substr(i, 3))) { - new_str += " "; - new_str += ori_str.substr(i, 3); - new_str += " "; - i += 3; + code = to_lower(code); + if (type == CODEPOINT_TYPE_WHITESPACE) { + code = ' '; } - else { - new_str += ori_str[i]; - i += 1; + std::string s = codepoint_to_utf8(code); + if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) { + new_str += " "; + new_str += s; + new_str += " "; + } else { + new_str += s; } } // split by whitespace uint64_t l = 0; uint64_t r = 0; + std::vector words; while (r < new_str.size()) { // if is whitespace if (isspace(new_str[r])) { @@ -8695,47 +9000,20 @@ struct llm_tokenizer_wpm { return words; } - std::string normalize(const std::string & text) { - // TODO: handle chinese characters? https://github.com/huggingface/tokenizers/blob/ef5f50605ddf9f8caef1598c0e4853862b9707a7/tokenizers/src/normalizers/bert.rs#L98 - std::string text2 = strip_accents(text); - for (size_t i = 0; i < text2.size(); i += utf8_len(text2[i])) { - char c = text2[i]; - if (c >= 'A' && c <= 'Z') { - text2[i] = c - 'A' + 'a'; - } + uint32_t to_lower(uint32_t code) { +#if defined(_WIN32) + if (code > 0xFFFF) { + return code; } - return text2; +#endif + return std::tolower(wchar_t(code), std::locale("en_US.UTF-8")); } - bool is_chinese_char(const std::string & str) { - int len = str.length(); - unsigned int codepoint = 0; - int num_bytes = 0; - int i = 0; - unsigned char ch = static_cast(str[i]); - if (ch <= 0x7f) { - codepoint = ch; - num_bytes = 1; - } else if ((ch >> 5) == 0x06) { - codepoint = ch & 0x1f; - num_bytes = 2; - } else if ((ch >> 4) == 0x0e) { - codepoint = ch & 0x0f; - num_bytes = 3; - } else if ((ch >> 3) == 0x1e) { - codepoint = ch & 0x07; - num_bytes = 4; - } - for (int j = 1; j < num_bytes; ++j) { - if (i + j >= len) { - return false; // incomplete UTF-8 character - } - unsigned char next_ch = static_cast(str[i + j]); - if ((next_ch >> 6) != 0x02) { - return false; // invalid trailing byte - } - codepoint = (codepoint << 6) | (next_ch & 0x3f); - } + bool is_ascii_punct(uint32_t code) { + return code < 256 && ispunct(code); + } + + bool is_chinese_char(uint32_t codepoint) { if ((codepoint >= 0x4E00 && codepoint <= 0x9FFF) || (codepoint >= 0x3400 && codepoint <= 0x4DBF) || (codepoint >= 0x20000 && codepoint <= 0x2A6DF) || @@ -8751,41 +9029,6 @@ struct llm_tokenizer_wpm { return false; } - std::string strip_accents(const std::string & input_string) { - std::string resultString; - std::map accent_map = { - {"À", 'A'}, {"Á", 'A'}, {"Â", 'A'}, {"Ã", 'A'}, {"Ä", 'A'}, {"Å", 'A'}, - {"à", 'a'}, {"á", 'a'}, {"â", 'a'}, {"ã", 'a'}, {"ä", 'a'}, {"å", 'a'}, - {"È", 'E'}, {"É", 'E'}, {"Ê", 'E'}, {"Ë", 'E'}, {"è", 'e'}, {"é", 'e'}, - {"ê", 'e'}, {"ë", 'e'}, {"Ì", 'I'}, {"Í", 'I'}, {"Î", 'I'}, {"Ï", 'I'}, - {"ì", 'i'}, {"í", 'i'}, {"î", 'i'}, {"ï", 'i'}, {"Ò", 'O'}, {"Ó", 'O'}, - {"Ô", 'O'}, {"Õ", 'O'}, {"Ö", 'O'}, {"ò", 'o'}, {"ó", 'o'}, {"ô", 'o'}, - {"õ", 'o'}, {"ö", 'o'}, {"Ù", 'U'}, {"Ú", 'U'}, {"Û", 'U'}, {"Ü", 'U'}, - {"ù", 'u'}, {"ú", 'u'}, {"û", 'u'}, {"ü", 'u'}, {"Ý", 'Y'}, {"ý", 'y'}, - {"Ç", 'C'}, {"ç", 'c'}, {"Ñ", 'N'}, {"ñ", 'n'}, - }; - - for (size_t i = 0; i < input_string.length();) { - int len = utf8_len(input_string[i]); - std::string curChar = input_string.substr(i, len); - auto iter = accent_map.find(curChar); - if (iter != accent_map.end()) { - resultString += iter->second; - } else { - resultString += curChar; - } - i += len; - } - - return resultString; - } - - static size_t utf8_len(char src) { - const size_t lookup[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4}; - uint8_t highbits = static_cast(src) >> 4; - return lookup[highbits]; - } - const llama_vocab & vocab; }; @@ -10511,31 +10754,47 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) { new_type = GGML_TYPE_Q8_0; } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) { + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || + ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { new_type = GGML_TYPE_Q5_K; } else if (new_type != GGML_TYPE_Q8_0) { new_type = GGML_TYPE_Q6_K; } } else if (name == "token_embd.weight") { - if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) { + if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || + ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) { new_type = GGML_TYPE_Q2_K; } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { - new_type = GGML_TYPE_Q4_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { + new_type = GGML_TYPE_IQ3_S; } - } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) { + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { + new_type = GGML_TYPE_IQ3_S; + } + } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || + ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { if (name.find("attn_v.weight") != std::string::npos) { if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K; - else new_type = GGML_TYPE_Q2_K; + else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; ++qs.i_attention_wv; } + else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) { + new_type = GGML_TYPE_Q4_K; + } else if (name.find("ffn_down") != std::string::npos) { - if (qs.i_ffn_down < qs.n_ffn_down/8) new_type = GGML_TYPE_Q2_K; + if (qs.i_ffn_down < qs.n_ffn_down/8) { + new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; + } ++qs.i_ffn_down; } else if (name.find("attn_output.weight") != std::string::npos) { - if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) new_type = GGML_TYPE_IQ2_XXS; + if (qs.model.hparams.n_expert == 8) { + new_type = GGML_TYPE_Q5_K; + } else { + if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) new_type = GGML_TYPE_IQ2_XXS; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S; + } } } else if (name.find("attn_v.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { @@ -10545,7 +10804,13 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { - new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_Q3_K : GGML_TYPE_IQ3_XXS; + new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S && qs.model.hparams.n_gqa() >= 4) { + new_type = GGML_TYPE_Q4_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { + new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S && qs.model.hparams.n_gqa() >= 4) { new_type = GGML_TYPE_Q4_K; @@ -10557,7 +10822,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL && qs.model.hparams.n_gqa() >= 4) { + else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) { new_type = GGML_TYPE_Q5_K; } else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && @@ -10583,13 +10848,19 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty // TODO: explore better strategies new_type = GGML_TYPE_Q8_0; } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) { + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { new_type = GGML_TYPE_IQ3_XXS; } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { + new_type = GGML_TYPE_IQ2_S; + } } else if (name.find("attn_q.weight") != std::string::npos) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) { + if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { new_type = GGML_TYPE_IQ3_XXS; } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { + new_type = GGML_TYPE_IQ2_S; + } } else if (name.find("ffn_down") != std::string::npos) { auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str()); int i_layer = info.first, n_layer = info.second; @@ -10620,8 +10891,8 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; } } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL && !qs.has_imatrix) { - if (i_layer < n_layer/8) new_type = GGML_TYPE_Q5_K; + else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) { + new_type = GGML_TYPE_Q5_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) { @@ -10638,15 +10909,15 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty } else if (name.find("attn_output.weight") != std::string::npos) { if (arch != LLM_ARCH_FALCON) { if (qs.model.hparams.n_expert == 8) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || - ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { + ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) { new_type = GGML_TYPE_Q5_K; } } else { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_Q3_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K; @@ -10665,7 +10936,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty else if (name.find("ffn_gate") != std::string::npos) { auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str()); int i_layer = info.first, n_layer = info.second; - if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { + if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { new_type = GGML_TYPE_IQ3_XXS; } ++qs.i_ffn_gate; @@ -10673,7 +10944,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty else if (name.find("ffn_up") != std::string::npos) { auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str()); int i_layer = info.first, n_layer = info.second; - if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { + if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { new_type = GGML_TYPE_IQ3_XXS; } ++qs.i_ffn_up; @@ -10692,8 +10963,8 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty //} bool convert_incompatible_tensor = false; if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K || - new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || - new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || + new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS || + new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S || new_type == GGML_TYPE_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || new_type == GGML_TYPE_IQ3_S) { int nx = tensor->ne[0]; int ny = tensor->ne[1]; @@ -10708,14 +10979,16 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty switch (new_type) { case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ1_S: case GGML_TYPE_Q2_K: - case GGML_TYPE_Q3_K: new_type = GGML_TYPE_IQ4_NL; break; - case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; - case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; - case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; + case GGML_TYPE_Q3_K: + case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break; + case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; + case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; + case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; default: throw std::runtime_error("\nUnsupported tensor size encountered\n"); } LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type)); @@ -10741,7 +11014,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K_S: case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break; - case LLAMA_FTYPE_MOSTLY_Q3_K_XS: quantized_type = GGML_TYPE_IQ3_S; break; + case LLAMA_FTYPE_MOSTLY_IQ3_XS: quantized_type = GGML_TYPE_IQ3_S; break; case LLAMA_FTYPE_MOSTLY_Q3_K_S: case LLAMA_FTYPE_MOSTLY_Q3_K_M: case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break; @@ -10752,9 +11025,12 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break; case LLAMA_FTYPE_MOSTLY_IQ2_XXS: quantized_type = GGML_TYPE_IQ2_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ2_XS: quantized_type = GGML_TYPE_IQ2_XS; break; + case LLAMA_FTYPE_MOSTLY_IQ2_S: quantized_type = GGML_TYPE_IQ2_XS; break; + case LLAMA_FTYPE_MOSTLY_IQ2_M: quantized_type = GGML_TYPE_IQ2_S; break; case LLAMA_FTYPE_MOSTLY_IQ3_XXS: quantized_type = GGML_TYPE_IQ3_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ1_S: quantized_type = GGML_TYPE_IQ1_S; break; case LLAMA_FTYPE_MOSTLY_IQ4_NL: quantized_type = GGML_TYPE_IQ4_NL; break; + case LLAMA_FTYPE_MOSTLY_IQ4_XS: quantized_type = GGML_TYPE_IQ4_XS; break; case LLAMA_FTYPE_MOSTLY_IQ3_S: quantized_type = GGML_TYPE_IQ3_S; break; case LLAMA_FTYPE_MOSTLY_IQ3_M: quantized_type = GGML_TYPE_IQ3_S; break; @@ -10886,7 +11162,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s quantize &= !params->only_copy; // do not quantize expert gating tensors - quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_FFN_GATE_INP, "weight"); + // NOTE: can't use LLM_TN here because the layer number is not known + quantize &= name.find("ffn_gate_inp.weight") == std::string::npos; // do not quantize positional embeddings and token types (BERT) quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight"); @@ -10930,6 +11207,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } if ((new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_XS || + new_type == GGML_TYPE_IQ2_S || new_type == GGML_TYPE_IQ1_S || (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) { LLAMA_LOG_ERROR("\n\n============================================================\n"); @@ -11385,6 +11663,7 @@ struct llama_context_params llama_context_default_params() { /*.yarn_beta_fast =*/ 32.0f, /*.yarn_beta_slow =*/ 1.0f, /*.yarn_orig_ctx =*/ 0, + /*.defrag_thold =*/ -1.0f, /*.cb_eval =*/ nullptr, /*.cb_eval_user_data =*/ nullptr, /*.type_k =*/ GGML_TYPE_F16, @@ -11549,6 +11828,7 @@ struct llama_context * llama_new_context_with_model( cparams.yarn_attn_factor = params.yarn_attn_factor; cparams.yarn_beta_fast = params.yarn_beta_fast; cparams.yarn_beta_slow = params.yarn_beta_slow; + cparams.defrag_thold = params.defrag_thold; cparams.mul_mat_q = params.mul_mat_q; cparams.offload_kqv = params.offload_kqv; cparams.do_pooling = params.do_pooling; @@ -11671,8 +11951,7 @@ struct llama_context * llama_new_context_with_model( } ctx->backends.push_back(ctx->backend_cpu); - if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, - cparams.n_ctx, cparams.offload_kqv)) { + if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, cparams.n_ctx, cparams.offload_kqv)) { LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; @@ -11751,7 +12030,7 @@ struct llama_context * llama_new_context_with_model( } // buffer used to store the computation graph and the tensor meta data - ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead()); + ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false)); ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES); @@ -11820,6 +12099,49 @@ enum llama_vocab_type llama_vocab_type(const struct llama_model * model) { return model->vocab.type; } +enum llama_rope_type llama_rope_type(const struct llama_model * model) { + switch (model->arch) { + // these models do not use RoPE + case LLM_ARCH_GPT2: + case LLM_ARCH_GPTJ: + case LLM_ARCH_GPTNEOX: + case LLM_ARCH_MPT: + case LLM_ARCH_REFACT: + case LLM_ARCH_BLOOM: + return LLAMA_ROPE_TYPE_NONE; + + // use what we call a normal RoPE, operating on pairs of consecutive head values + case LLM_ARCH_LLAMA: + case LLM_ARCH_BAICHUAN: + case LLM_ARCH_STARCODER: + case LLM_ARCH_PLAMO: + case LLM_ARCH_CODESHELL: + case LLM_ARCH_ORION: + case LLM_ARCH_INTERNLM2: + case LLM_ARCH_MINICPM: + return LLAMA_ROPE_TYPE_NORM; + + // the pairs of head values are offset by n_rot/2 + case LLM_ARCH_FALCON: + case LLM_ARCH_PERSIMMON: + case LLM_ARCH_BERT: + case LLM_ARCH_NOMIC_BERT: + case LLM_ARCH_STABLELM: + case LLM_ARCH_QWEN: + case LLM_ARCH_QWEN2: + case LLM_ARCH_PHI2: + case LLM_ARCH_GEMMA: + return LLAMA_ROPE_TYPE_NEOX; + + // all model arches should be listed explicitly here + case LLM_ARCH_UNKNOWN: + GGML_ASSERT(false && "unknown architecture"); + break; + } + + return LLAMA_ROPE_TYPE_NONE; +} + int32_t llama_n_vocab(const struct llama_model * model) { return model->vocab.id_to_token.size(); } @@ -12062,12 +12384,12 @@ void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) { llama_kv_cache_seq_keep(ctx->kv_self, seq_id); } -void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { +void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { if (delta == 0) { return; } - llama_kv_cache_seq_shift(ctx->kv_self, seq_id, p0, p1, delta); + llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta); } void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { @@ -12078,6 +12400,19 @@ void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, lla llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d); } +llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) { + return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id); +} + +void llama_kv_cache_defrag(struct llama_context * ctx) { + llama_kv_cache_defrag(ctx->kv_self); +} + +void llama_kv_cache_update(struct llama_context * ctx) { + llama_kv_cache_update_internal(*ctx); +} + + // Returns the *maximum* size of the state size_t llama_get_state_size(const struct llama_context * ctx) { // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. @@ -12204,10 +12539,10 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat const auto & hparams = ctx->model.hparams; const auto & cparams = ctx->cparams; - const auto n_layer = hparams.n_layer; - const auto n_embd_k_gqa = hparams.n_embd_k_gqa(); - const auto n_embd_v_gqa = hparams.n_embd_v_gqa(); - const auto n_ctx = cparams.n_ctx; + const uint32_t n_layer = hparams.n_layer; + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + const uint32_t n_ctx = cparams.n_ctx; const size_t kv_buf_size = kv_self.total_size(); const uint32_t kv_head = kv_self.head; @@ -12222,14 +12557,16 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat if (kv_buf_size) { std::vector tmp_buf; for (int il = 0; il < (int) n_layer; ++il) { - size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head); + const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head); + tmp_buf.resize(k_size); ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size()); data_ctx->write(tmp_buf.data(), tmp_buf.size()); // v is not contiguous, copy row by row - size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head); - size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, n_ctx); + const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head); + const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, n_ctx); + tmp_buf.resize(v_row_size); for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) { ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size()); @@ -12316,10 +12653,10 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { const auto & hparams = ctx->model.hparams; const auto & cparams = ctx->cparams; - const int n_layer = hparams.n_layer; - const int n_embd_k_gqa = hparams.n_embd_k_gqa(); - const int n_embd_v_gqa = hparams.n_embd_v_gqa(); - const int n_ctx = cparams.n_ctx; + const uint32_t n_layer = hparams.n_layer; + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + const uint32_t n_ctx = cparams.n_ctx; size_t kv_buf_size; uint32_t kv_head; @@ -12335,13 +12672,15 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { GGML_ASSERT(kv_self.total_size() == kv_buf_size); for (int il = 0; il < (int) n_layer; ++il) { - size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head); + const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head); + ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size); inp += k_size; // v is not contiguous, copy row by row - size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head); - size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, n_ctx); + const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head); + const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, n_ctx); + for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) { ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size); inp += v_row_size; diff --git a/examples/talk-llama/llama.h b/examples/talk-llama/llama.h index 947284e..16e28e9 100644 --- a/examples/talk-llama/llama.h +++ b/examples/talk-llama/llama.h @@ -64,6 +64,15 @@ extern "C" { LLAMA_VOCAB_TYPE_WPM = 2, // WordPiece }; + // note: these values should be synchronized with ggml_rope + // TODO: maybe move this enum to ggml.h (ggml_rope_type) + enum llama_rope_type { + LLAMA_ROPE_TYPE_NONE = -1, + LLAMA_ROPE_TYPE_NORM = 0, + LLAMA_ROPE_TYPE_NEOX = 2, + LLAMA_ROPE_TYPE_GLM = 4, + }; + enum llama_token_type { LLAMA_TOKEN_TYPE_UNDEFINED = 0, LLAMA_TOKEN_TYPE_NORMAL = 1, @@ -98,12 +107,15 @@ extern "C" { LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors - LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file }; @@ -234,6 +246,7 @@ extern "C" { float yarn_beta_fast; // YaRN low correction dim float yarn_beta_slow; // YaRN high correction dim uint32_t yarn_orig_ctx; // YaRN original context size + float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default) ggml_backend_sched_eval_callback cb_eval; void * cb_eval_user_data; @@ -360,6 +373,7 @@ extern "C" { LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx); LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model); + LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model); LLAMA_API int32_t llama_n_vocab (const struct llama_model * model); LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model); @@ -514,10 +528,12 @@ extern "C" { llama_seq_id seq_id); // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1) - // If the KV cache is RoPEd, the KV data is updated accordingly + // If the KV cache is RoPEd, the KV data is updated accordingly: + // - lazily on next llama_decode() + // - explicitly with llama_kv_cache_update() // p0 < 0 : [0, p1] // p1 < 0 : [p0, inf) - LLAMA_API void llama_kv_cache_seq_shift( + LLAMA_API void llama_kv_cache_seq_add( struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, @@ -525,7 +541,9 @@ extern "C" { llama_pos delta); // Integer division of the positions by factor of `d > 1` - // If the KV cache is RoPEd, the KV data is updated accordingly + // If the KV cache is RoPEd, the KV data is updated accordingly: + // - lazily on next llama_decode() + // - explicitly with llama_kv_cache_update() // p0 < 0 : [0, p1] // p1 < 0 : [p0, inf) LLAMA_API void llama_kv_cache_seq_div( @@ -535,6 +553,20 @@ extern "C" { llama_pos p1, int d); + // Returns the largest position present in the KV cache for the specified sequence + LLAMA_API llama_pos llama_kv_cache_seq_pos_max( + struct llama_context * ctx, + llama_seq_id seq_id); + + // Defragment the KV cache + // This will be applied: + // - lazily on next llama_decode() + // - explicitly with llama_kv_cache_update() + LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx); + + // Apply the KV cache updates (such as K-shifts, defragmentation, etc.) + LLAMA_API void llama_kv_cache_update(struct llama_context * ctx); + // // State / sessions // diff --git a/examples/talk-llama/unicode.h b/examples/talk-llama/unicode.h index 2632607..620e2b5 100644 --- a/examples/talk-llama/unicode.h +++ b/examples/talk-llama/unicode.h @@ -223,6 +223,268 @@ static const std::vector> control_ranges = { {0x2B81E, 0x2B81F}, {0x2CEA2, 0x2CEAF}, {0x2EBE1, 0x2F7FF}, {0x2FA1E, 0x2FFFF}, {0x3134B, 0xE00FF}, {0xE01F0, 0x10FFFF}, }; +static const std::unordered_map> nfd_map = { +{0xC0, {0x41, 0x300}}, {0xC1, {0x41, 0x301}}, {0xC2, {0x41, 0x302}}, {0xC3, {0x41, 0x303}}, {0xC4, {0x41, 0x308}}, {0xC5, {0x41, 0x30A}}, {0xC7, {0x43, 0x327}}, {0xC8, {0x45, 0x300}}, +{0xC9, {0x45, 0x301}}, {0xCA, {0x45, 0x302}}, {0xCB, {0x45, 0x308}}, {0xCC, {0x49, 0x300}}, {0xCD, {0x49, 0x301}}, {0xCE, {0x49, 0x302}}, {0xCF, {0x49, 0x308}}, {0xD1, {0x4E, 0x303}}, +{0xD2, {0x4F, 0x300}}, {0xD3, {0x4F, 0x301}}, {0xD4, {0x4F, 0x302}}, {0xD5, {0x4F, 0x303}}, {0xD6, {0x4F, 0x308}}, {0xD9, {0x55, 0x300}}, {0xDA, {0x55, 0x301}}, {0xDB, {0x55, 0x302}}, +{0xDC, {0x55, 0x308}}, {0xDD, {0x59, 0x301}}, {0xE0, {0x61, 0x300}}, {0xE1, {0x61, 0x301}}, {0xE2, {0x61, 0x302}}, {0xE3, {0x61, 0x303}}, {0xE4, {0x61, 0x308}}, {0xE5, {0x61, 0x30A}}, +{0xE7, {0x63, 0x327}}, {0xE8, {0x65, 0x300}}, {0xE9, {0x65, 0x301}}, {0xEA, {0x65, 0x302}}, {0xEB, {0x65, 0x308}}, {0xEC, {0x69, 0x300}}, {0xED, {0x69, 0x301}}, {0xEE, {0x69, 0x302}}, +{0xEF, {0x69, 0x308}}, {0xF1, {0x6E, 0x303}}, {0xF2, {0x6F, 0x300}}, {0xF3, {0x6F, 0x301}}, {0xF4, {0x6F, 0x302}}, {0xF5, {0x6F, 0x303}}, {0xF6, {0x6F, 0x308}}, {0xF9, {0x75, 0x300}}, +{0xFA, {0x75, 0x301}}, {0xFB, {0x75, 0x302}}, {0xFC, {0x75, 0x308}}, {0xFD, {0x79, 0x301}}, {0xFF, {0x79, 0x308}}, {0x100, {0x41, 0x304}}, {0x101, {0x61, 0x304}}, {0x102, {0x41, 0x306}}, +{0x103, {0x61, 0x306}}, {0x104, {0x41, 0x328}}, {0x105, {0x61, 0x328}}, {0x106, {0x43, 0x301}}, {0x107, {0x63, 0x301}}, {0x108, {0x43, 0x302}}, {0x109, {0x63, 0x302}}, {0x10A, {0x43, 0x307}}, +{0x10B, {0x63, 0x307}}, {0x10C, {0x43, 0x30C}}, {0x10D, {0x63, 0x30C}}, {0x10E, {0x44, 0x30C}}, {0x10F, {0x64, 0x30C}}, {0x112, {0x45, 0x304}}, {0x113, {0x65, 0x304}}, {0x114, {0x45, 0x306}}, +{0x115, {0x65, 0x306}}, {0x116, {0x45, 0x307}}, {0x117, {0x65, 0x307}}, {0x118, {0x45, 0x328}}, {0x119, {0x65, 0x328}}, {0x11A, {0x45, 0x30C}}, {0x11B, {0x65, 0x30C}}, {0x11C, {0x47, 0x302}}, +{0x11D, {0x67, 0x302}}, {0x11E, {0x47, 0x306}}, {0x11F, {0x67, 0x306}}, {0x120, {0x47, 0x307}}, {0x121, {0x67, 0x307}}, {0x122, {0x47, 0x327}}, {0x123, {0x67, 0x327}}, {0x124, {0x48, 0x302}}, +{0x125, {0x68, 0x302}}, {0x128, {0x49, 0x303}}, {0x129, {0x69, 0x303}}, {0x12A, {0x49, 0x304}}, {0x12B, {0x69, 0x304}}, {0x12C, {0x49, 0x306}}, {0x12D, {0x69, 0x306}}, {0x12E, {0x49, 0x328}}, +{0x12F, {0x69, 0x328}}, {0x130, {0x49, 0x307}}, {0x134, {0x4A, 0x302}}, {0x135, {0x6A, 0x302}}, {0x136, {0x4B, 0x327}}, {0x137, {0x6B, 0x327}}, {0x139, {0x4C, 0x301}}, {0x13A, {0x6C, 0x301}}, +{0x13B, {0x4C, 0x327}}, {0x13C, {0x6C, 0x327}}, {0x13D, {0x4C, 0x30C}}, {0x13E, {0x6C, 0x30C}}, {0x143, {0x4E, 0x301}}, {0x144, {0x6E, 0x301}}, {0x145, {0x4E, 0x327}}, {0x146, {0x6E, 0x327}}, +{0x147, {0x4E, 0x30C}}, {0x148, {0x6E, 0x30C}}, {0x14C, {0x4F, 0x304}}, {0x14D, {0x6F, 0x304}}, {0x14E, {0x4F, 0x306}}, {0x14F, {0x6F, 0x306}}, {0x150, {0x4F, 0x30B}}, {0x151, {0x6F, 0x30B}}, +{0x154, {0x52, 0x301}}, {0x155, {0x72, 0x301}}, {0x156, {0x52, 0x327}}, {0x157, {0x72, 0x327}}, {0x158, {0x52, 0x30C}}, {0x159, {0x72, 0x30C}}, {0x15A, {0x53, 0x301}}, {0x15B, {0x73, 0x301}}, +{0x15C, {0x53, 0x302}}, {0x15D, {0x73, 0x302}}, {0x15E, {0x53, 0x327}}, {0x15F, {0x73, 0x327}}, {0x160, {0x53, 0x30C}}, {0x161, {0x73, 0x30C}}, {0x162, {0x54, 0x327}}, {0x163, {0x74, 0x327}}, +{0x164, {0x54, 0x30C}}, {0x165, {0x74, 0x30C}}, {0x168, {0x55, 0x303}}, {0x169, {0x75, 0x303}}, {0x16A, {0x55, 0x304}}, {0x16B, {0x75, 0x304}}, {0x16C, {0x55, 0x306}}, {0x16D, {0x75, 0x306}}, +{0x16E, {0x55, 0x30A}}, {0x16F, {0x75, 0x30A}}, {0x170, {0x55, 0x30B}}, {0x171, {0x75, 0x30B}}, {0x172, {0x55, 0x328}}, {0x173, {0x75, 0x328}}, {0x174, {0x57, 0x302}}, {0x175, {0x77, 0x302}}, +{0x176, {0x59, 0x302}}, {0x177, {0x79, 0x302}}, {0x178, {0x59, 0x308}}, {0x179, {0x5A, 0x301}}, {0x17A, {0x7A, 0x301}}, {0x17B, {0x5A, 0x307}}, {0x17C, {0x7A, 0x307}}, {0x17D, {0x5A, 0x30C}}, +{0x17E, {0x7A, 0x30C}}, {0x1A0, {0x4F, 0x31B}}, {0x1A1, {0x6F, 0x31B}}, {0x1AF, {0x55, 0x31B}}, {0x1B0, {0x75, 0x31B}}, {0x1CD, {0x41, 0x30C}}, {0x1CE, {0x61, 0x30C}}, {0x1CF, {0x49, 0x30C}}, +{0x1D0, {0x69, 0x30C}}, {0x1D1, {0x4F, 0x30C}}, {0x1D2, {0x6F, 0x30C}}, {0x1D3, {0x55, 0x30C}}, {0x1D4, {0x75, 0x30C}}, {0x1D5, {0x55, 0x308, 0x304}}, {0x1D6, {0x75, 0x308, 0x304}}, +{0x1D7, {0x55, 0x308, 0x301}}, {0x1D8, {0x75, 0x308, 0x301}}, {0x1D9, {0x55, 0x308, 0x30C}}, {0x1DA, {0x75, 0x308, 0x30C}}, {0x1DB, {0x55, 0x308, 0x300}}, {0x1DC, {0x75, 0x308, 0x300}}, +{0x1DE, {0x41, 0x308, 0x304}}, {0x1DF, {0x61, 0x308, 0x304}}, {0x1E0, {0x41, 0x307, 0x304}}, {0x1E1, {0x61, 0x307, 0x304}}, {0x1E2, {0xC6, 0x304}}, {0x1E3, {0xE6, 0x304}}, {0x1E6, {0x47, 0x30C}}, +{0x1E7, {0x67, 0x30C}}, {0x1E8, {0x4B, 0x30C}}, {0x1E9, {0x6B, 0x30C}}, {0x1EA, {0x4F, 0x328}}, {0x1EB, {0x6F, 0x328}}, {0x1EC, {0x4F, 0x328, 0x304}}, {0x1ED, {0x6F, 0x328, 0x304}}, +{0x1EE, {0x1B7, 0x30C}}, {0x1EF, {0x292, 0x30C}}, {0x1F0, {0x6A, 0x30C}}, {0x1F4, {0x47, 0x301}}, {0x1F5, {0x67, 0x301}}, {0x1F8, {0x4E, 0x300}}, {0x1F9, {0x6E, 0x300}}, {0x1FA, {0x41, 0x30A, 0x301}}, +{0x1FB, {0x61, 0x30A, 0x301}}, {0x1FC, {0xC6, 0x301}}, {0x1FD, {0xE6, 0x301}}, {0x1FE, {0xD8, 0x301}}, {0x1FF, {0xF8, 0x301}}, {0x200, {0x41, 0x30F}}, {0x201, {0x61, 0x30F}}, {0x202, {0x41, 0x311}}, +{0x203, {0x61, 0x311}}, {0x204, {0x45, 0x30F}}, {0x205, {0x65, 0x30F}}, {0x206, {0x45, 0x311}}, {0x207, {0x65, 0x311}}, {0x208, {0x49, 0x30F}}, {0x209, {0x69, 0x30F}}, {0x20A, {0x49, 0x311}}, +{0x20B, {0x69, 0x311}}, {0x20C, {0x4F, 0x30F}}, {0x20D, {0x6F, 0x30F}}, {0x20E, {0x4F, 0x311}}, {0x20F, {0x6F, 0x311}}, {0x210, {0x52, 0x30F}}, {0x211, {0x72, 0x30F}}, {0x212, {0x52, 0x311}}, +{0x213, {0x72, 0x311}}, {0x214, {0x55, 0x30F}}, {0x215, {0x75, 0x30F}}, {0x216, {0x55, 0x311}}, {0x217, {0x75, 0x311}}, {0x218, {0x53, 0x326}}, {0x219, {0x73, 0x326}}, {0x21A, {0x54, 0x326}}, +{0x21B, {0x74, 0x326}}, {0x21E, {0x48, 0x30C}}, {0x21F, {0x68, 0x30C}}, {0x226, {0x41, 0x307}}, {0x227, {0x61, 0x307}}, {0x228, {0x45, 0x327}}, {0x229, {0x65, 0x327}}, {0x22A, {0x4F, 0x308, 0x304}}, +{0x22B, {0x6F, 0x308, 0x304}}, {0x22C, {0x4F, 0x303, 0x304}}, {0x22D, {0x6F, 0x303, 0x304}}, {0x22E, {0x4F, 0x307}}, {0x22F, {0x6F, 0x307}}, {0x230, {0x4F, 0x307, 0x304}}, +{0x231, {0x6F, 0x307, 0x304}}, {0x232, {0x59, 0x304}}, {0x233, {0x79, 0x304}}, {0x340, {0x300}}, {0x341, {0x301}}, {0x343, {0x313}}, {0x344, {0x308, 0x301}}, {0x374, {0x2B9}}, {0x37E, {0x3B}}, +{0x385, {0xA8, 0x301}}, {0x386, {0x391, 0x301}}, {0x387, {0xB7}}, {0x388, {0x395, 0x301}}, {0x389, {0x397, 0x301}}, {0x38A, {0x399, 0x301}}, {0x38C, {0x39F, 0x301}}, {0x38E, {0x3A5, 0x301}}, +{0x38F, {0x3A9, 0x301}}, {0x390, {0x3B9, 0x308, 0x301}}, {0x3AA, {0x399, 0x308}}, {0x3AB, {0x3A5, 0x308}}, {0x3AC, {0x3B1, 0x301}}, {0x3AD, {0x3B5, 0x301}}, {0x3AE, {0x3B7, 0x301}}, +{0x3AF, {0x3B9, 0x301}}, {0x3B0, {0x3C5, 0x308, 0x301}}, {0x3CA, {0x3B9, 0x308}}, {0x3CB, {0x3C5, 0x308}}, {0x3CC, {0x3BF, 0x301}}, {0x3CD, {0x3C5, 0x301}}, {0x3CE, {0x3C9, 0x301}}, +{0x3D3, {0x3D2, 0x301}}, {0x3D4, {0x3D2, 0x308}}, {0x400, {0x415, 0x300}}, {0x401, {0x415, 0x308}}, {0x403, {0x413, 0x301}}, {0x407, {0x406, 0x308}}, {0x40C, {0x41A, 0x301}}, {0x40D, {0x418, 0x300}}, +{0x40E, {0x423, 0x306}}, {0x419, {0x418, 0x306}}, {0x439, {0x438, 0x306}}, {0x450, {0x435, 0x300}}, {0x451, {0x435, 0x308}}, {0x453, {0x433, 0x301}}, {0x457, {0x456, 0x308}}, {0x45C, {0x43A, 0x301}}, +{0x45D, {0x438, 0x300}}, {0x45E, {0x443, 0x306}}, {0x476, {0x474, 0x30F}}, {0x477, {0x475, 0x30F}}, {0x4C1, {0x416, 0x306}}, {0x4C2, {0x436, 0x306}}, {0x4D0, {0x410, 0x306}}, {0x4D1, {0x430, 0x306}}, +{0x4D2, {0x410, 0x308}}, {0x4D3, {0x430, 0x308}}, {0x4D6, {0x415, 0x306}}, {0x4D7, {0x435, 0x306}}, {0x4DA, {0x4D8, 0x308}}, {0x4DB, {0x4D9, 0x308}}, {0x4DC, {0x416, 0x308}}, {0x4DD, {0x436, 0x308}}, +{0x4DE, {0x417, 0x308}}, {0x4DF, {0x437, 0x308}}, {0x4E2, {0x418, 0x304}}, {0x4E3, {0x438, 0x304}}, {0x4E4, {0x418, 0x308}}, {0x4E5, {0x438, 0x308}}, {0x4E6, {0x41E, 0x308}}, {0x4E7, {0x43E, 0x308}}, +{0x4EA, {0x4E8, 0x308}}, {0x4EB, {0x4E9, 0x308}}, {0x4EC, {0x42D, 0x308}}, {0x4ED, {0x44D, 0x308}}, {0x4EE, {0x423, 0x304}}, {0x4EF, {0x443, 0x304}}, {0x4F0, {0x423, 0x308}}, {0x4F1, {0x443, 0x308}}, +{0x4F2, {0x423, 0x30B}}, {0x4F3, {0x443, 0x30B}}, {0x4F4, {0x427, 0x308}}, {0x4F5, {0x447, 0x308}}, {0x4F8, {0x42B, 0x308}}, {0x4F9, {0x44B, 0x308}}, {0x622, {0x627, 0x653}}, {0x623, {0x627, 0x654}}, +{0x624, {0x648, 0x654}}, {0x625, {0x627, 0x655}}, {0x626, {0x64A, 0x654}}, {0x6C0, {0x6D5, 0x654}}, {0x6C2, {0x6C1, 0x654}}, {0x6D3, {0x6D2, 0x654}}, {0x929, {0x928, 0x93C}}, {0x931, {0x930, 0x93C}}, +{0x934, {0x933, 0x93C}}, {0x958, {0x915, 0x93C}}, {0x959, {0x916, 0x93C}}, {0x95A, {0x917, 0x93C}}, {0x95B, {0x91C, 0x93C}}, {0x95C, {0x921, 0x93C}}, {0x95D, {0x922, 0x93C}}, {0x95E, {0x92B, 0x93C}}, +{0x95F, {0x92F, 0x93C}}, {0x9CB, {0x9C7, 0x9BE}}, {0x9CC, {0x9C7, 0x9D7}}, {0x9DC, {0x9A1, 0x9BC}}, {0x9DD, {0x9A2, 0x9BC}}, {0x9DF, {0x9AF, 0x9BC}}, {0xA33, {0xA32, 0xA3C}}, {0xA36, {0xA38, 0xA3C}}, +{0xA59, {0xA16, 0xA3C}}, {0xA5A, {0xA17, 0xA3C}}, {0xA5B, {0xA1C, 0xA3C}}, {0xA5E, {0xA2B, 0xA3C}}, {0xB48, {0xB47, 0xB56}}, {0xB4B, {0xB47, 0xB3E}}, {0xB4C, {0xB47, 0xB57}}, {0xB5C, {0xB21, 0xB3C}}, +{0xB5D, {0xB22, 0xB3C}}, {0xB94, {0xB92, 0xBD7}}, {0xBCA, {0xBC6, 0xBBE}}, {0xBCB, {0xBC7, 0xBBE}}, {0xBCC, {0xBC6, 0xBD7}}, {0xC48, {0xC46, 0xC56}}, {0xCC0, {0xCBF, 0xCD5}}, {0xCC7, {0xCC6, 0xCD5}}, +{0xCC8, {0xCC6, 0xCD6}}, {0xCCA, {0xCC6, 0xCC2}}, {0xCCB, {0xCC6, 0xCC2, 0xCD5}}, {0xD4A, {0xD46, 0xD3E}}, {0xD4B, {0xD47, 0xD3E}}, {0xD4C, {0xD46, 0xD57}}, {0xDDA, {0xDD9, 0xDCA}}, +{0xDDC, {0xDD9, 0xDCF}}, {0xDDD, {0xDD9, 0xDCF, 0xDCA}}, {0xDDE, {0xDD9, 0xDDF}}, {0xF43, {0xF42, 0xFB7}}, {0xF4D, {0xF4C, 0xFB7}}, {0xF52, {0xF51, 0xFB7}}, {0xF57, {0xF56, 0xFB7}}, +{0xF5C, {0xF5B, 0xFB7}}, {0xF69, {0xF40, 0xFB5}}, {0xF73, {0xF71, 0xF72}}, {0xF75, {0xF71, 0xF74}}, {0xF76, {0xFB2, 0xF80}}, {0xF78, {0xFB3, 0xF80}}, {0xF81, {0xF71, 0xF80}}, {0xF93, {0xF92, 0xFB7}}, +{0xF9D, {0xF9C, 0xFB7}}, {0xFA2, {0xFA1, 0xFB7}}, {0xFA7, {0xFA6, 0xFB7}}, {0xFAC, {0xFAB, 0xFB7}}, {0xFB9, {0xF90, 0xFB5}}, {0x1026, {0x1025, 0x102E}}, {0x1B06, {0x1B05, 0x1B35}}, +{0x1B08, {0x1B07, 0x1B35}}, {0x1B0A, {0x1B09, 0x1B35}}, {0x1B0C, {0x1B0B, 0x1B35}}, {0x1B0E, {0x1B0D, 0x1B35}}, {0x1B12, {0x1B11, 0x1B35}}, {0x1B3B, {0x1B3A, 0x1B35}}, {0x1B3D, {0x1B3C, 0x1B35}}, +{0x1B40, {0x1B3E, 0x1B35}}, {0x1B41, {0x1B3F, 0x1B35}}, {0x1B43, {0x1B42, 0x1B35}}, {0x1E00, {0x41, 0x325}}, {0x1E01, {0x61, 0x325}}, {0x1E02, {0x42, 0x307}}, {0x1E03, {0x62, 0x307}}, +{0x1E04, {0x42, 0x323}}, {0x1E05, {0x62, 0x323}}, {0x1E06, {0x42, 0x331}}, {0x1E07, {0x62, 0x331}}, {0x1E08, {0x43, 0x327, 0x301}}, {0x1E09, {0x63, 0x327, 0x301}}, {0x1E0A, {0x44, 0x307}}, +{0x1E0B, {0x64, 0x307}}, {0x1E0C, {0x44, 0x323}}, {0x1E0D, {0x64, 0x323}}, {0x1E0E, {0x44, 0x331}}, {0x1E0F, {0x64, 0x331}}, {0x1E10, {0x44, 0x327}}, {0x1E11, {0x64, 0x327}}, {0x1E12, {0x44, 0x32D}}, +{0x1E13, {0x64, 0x32D}}, {0x1E14, {0x45, 0x304, 0x300}}, {0x1E15, {0x65, 0x304, 0x300}}, {0x1E16, {0x45, 0x304, 0x301}}, {0x1E17, {0x65, 0x304, 0x301}}, {0x1E18, {0x45, 0x32D}}, +{0x1E19, {0x65, 0x32D}}, {0x1E1A, {0x45, 0x330}}, {0x1E1B, {0x65, 0x330}}, {0x1E1C, {0x45, 0x327, 0x306}}, {0x1E1D, {0x65, 0x327, 0x306}}, {0x1E1E, {0x46, 0x307}}, {0x1E1F, {0x66, 0x307}}, +{0x1E20, {0x47, 0x304}}, {0x1E21, {0x67, 0x304}}, {0x1E22, {0x48, 0x307}}, {0x1E23, {0x68, 0x307}}, {0x1E24, {0x48, 0x323}}, {0x1E25, {0x68, 0x323}}, {0x1E26, {0x48, 0x308}}, {0x1E27, {0x68, 0x308}}, +{0x1E28, {0x48, 0x327}}, {0x1E29, {0x68, 0x327}}, {0x1E2A, {0x48, 0x32E}}, {0x1E2B, {0x68, 0x32E}}, {0x1E2C, {0x49, 0x330}}, {0x1E2D, {0x69, 0x330}}, {0x1E2E, {0x49, 0x308, 0x301}}, +{0x1E2F, {0x69, 0x308, 0x301}}, {0x1E30, {0x4B, 0x301}}, {0x1E31, {0x6B, 0x301}}, {0x1E32, {0x4B, 0x323}}, {0x1E33, {0x6B, 0x323}}, {0x1E34, {0x4B, 0x331}}, {0x1E35, {0x6B, 0x331}}, +{0x1E36, {0x4C, 0x323}}, {0x1E37, {0x6C, 0x323}}, {0x1E38, {0x4C, 0x323, 0x304}}, {0x1E39, {0x6C, 0x323, 0x304}}, {0x1E3A, {0x4C, 0x331}}, {0x1E3B, {0x6C, 0x331}}, {0x1E3C, {0x4C, 0x32D}}, +{0x1E3D, {0x6C, 0x32D}}, {0x1E3E, {0x4D, 0x301}}, {0x1E3F, {0x6D, 0x301}}, {0x1E40, {0x4D, 0x307}}, {0x1E41, {0x6D, 0x307}}, {0x1E42, {0x4D, 0x323}}, {0x1E43, {0x6D, 0x323}}, {0x1E44, {0x4E, 0x307}}, +{0x1E45, {0x6E, 0x307}}, {0x1E46, {0x4E, 0x323}}, {0x1E47, {0x6E, 0x323}}, {0x1E48, {0x4E, 0x331}}, {0x1E49, {0x6E, 0x331}}, {0x1E4A, {0x4E, 0x32D}}, {0x1E4B, {0x6E, 0x32D}}, +{0x1E4C, {0x4F, 0x303, 0x301}}, {0x1E4D, {0x6F, 0x303, 0x301}}, {0x1E4E, {0x4F, 0x303, 0x308}}, {0x1E4F, {0x6F, 0x303, 0x308}}, {0x1E50, {0x4F, 0x304, 0x300}}, {0x1E51, {0x6F, 0x304, 0x300}}, +{0x1E52, {0x4F, 0x304, 0x301}}, {0x1E53, {0x6F, 0x304, 0x301}}, {0x1E54, {0x50, 0x301}}, {0x1E55, {0x70, 0x301}}, {0x1E56, {0x50, 0x307}}, {0x1E57, {0x70, 0x307}}, {0x1E58, {0x52, 0x307}}, +{0x1E59, {0x72, 0x307}}, {0x1E5A, {0x52, 0x323}}, {0x1E5B, {0x72, 0x323}}, {0x1E5C, {0x52, 0x323, 0x304}}, {0x1E5D, {0x72, 0x323, 0x304}}, {0x1E5E, {0x52, 0x331}}, {0x1E5F, {0x72, 0x331}}, +{0x1E60, {0x53, 0x307}}, {0x1E61, {0x73, 0x307}}, {0x1E62, {0x53, 0x323}}, {0x1E63, {0x73, 0x323}}, {0x1E64, {0x53, 0x301, 0x307}}, {0x1E65, {0x73, 0x301, 0x307}}, {0x1E66, {0x53, 0x30C, 0x307}}, +{0x1E67, {0x73, 0x30C, 0x307}}, {0x1E68, {0x53, 0x323, 0x307}}, {0x1E69, {0x73, 0x323, 0x307}}, {0x1E6A, {0x54, 0x307}}, {0x1E6B, {0x74, 0x307}}, {0x1E6C, {0x54, 0x323}}, {0x1E6D, {0x74, 0x323}}, +{0x1E6E, {0x54, 0x331}}, {0x1E6F, {0x74, 0x331}}, {0x1E70, {0x54, 0x32D}}, {0x1E71, {0x74, 0x32D}}, {0x1E72, {0x55, 0x324}}, {0x1E73, {0x75, 0x324}}, {0x1E74, {0x55, 0x330}}, {0x1E75, {0x75, 0x330}}, +{0x1E76, {0x55, 0x32D}}, {0x1E77, {0x75, 0x32D}}, {0x1E78, {0x55, 0x303, 0x301}}, {0x1E79, {0x75, 0x303, 0x301}}, {0x1E7A, {0x55, 0x304, 0x308}}, {0x1E7B, {0x75, 0x304, 0x308}}, +{0x1E7C, {0x56, 0x303}}, {0x1E7D, {0x76, 0x303}}, {0x1E7E, {0x56, 0x323}}, {0x1E7F, {0x76, 0x323}}, {0x1E80, {0x57, 0x300}}, {0x1E81, {0x77, 0x300}}, {0x1E82, {0x57, 0x301}}, {0x1E83, {0x77, 0x301}}, +{0x1E84, {0x57, 0x308}}, {0x1E85, {0x77, 0x308}}, {0x1E86, {0x57, 0x307}}, {0x1E87, {0x77, 0x307}}, {0x1E88, {0x57, 0x323}}, {0x1E89, {0x77, 0x323}}, {0x1E8A, {0x58, 0x307}}, {0x1E8B, {0x78, 0x307}}, +{0x1E8C, {0x58, 0x308}}, {0x1E8D, {0x78, 0x308}}, {0x1E8E, {0x59, 0x307}}, {0x1E8F, {0x79, 0x307}}, {0x1E90, {0x5A, 0x302}}, {0x1E91, {0x7A, 0x302}}, {0x1E92, {0x5A, 0x323}}, {0x1E93, {0x7A, 0x323}}, +{0x1E94, {0x5A, 0x331}}, {0x1E95, {0x7A, 0x331}}, {0x1E96, {0x68, 0x331}}, {0x1E97, {0x74, 0x308}}, {0x1E98, {0x77, 0x30A}}, {0x1E99, {0x79, 0x30A}}, {0x1E9B, {0x17F, 0x307}}, {0x1EA0, {0x41, 0x323}}, +{0x1EA1, {0x61, 0x323}}, {0x1EA2, {0x41, 0x309}}, {0x1EA3, {0x61, 0x309}}, {0x1EA4, {0x41, 0x302, 0x301}}, {0x1EA5, {0x61, 0x302, 0x301}}, {0x1EA6, {0x41, 0x302, 0x300}}, +{0x1EA7, {0x61, 0x302, 0x300}}, {0x1EA8, {0x41, 0x302, 0x309}}, {0x1EA9, {0x61, 0x302, 0x309}}, {0x1EAA, {0x41, 0x302, 0x303}}, {0x1EAB, {0x61, 0x302, 0x303}}, {0x1EAC, {0x41, 0x323, 0x302}}, +{0x1EAD, {0x61, 0x323, 0x302}}, {0x1EAE, {0x41, 0x306, 0x301}}, {0x1EAF, {0x61, 0x306, 0x301}}, {0x1EB0, {0x41, 0x306, 0x300}}, {0x1EB1, {0x61, 0x306, 0x300}}, {0x1EB2, {0x41, 0x306, 0x309}}, +{0x1EB3, {0x61, 0x306, 0x309}}, {0x1EB4, {0x41, 0x306, 0x303}}, {0x1EB5, {0x61, 0x306, 0x303}}, {0x1EB6, {0x41, 0x323, 0x306}}, {0x1EB7, {0x61, 0x323, 0x306}}, {0x1EB8, {0x45, 0x323}}, +{0x1EB9, {0x65, 0x323}}, {0x1EBA, {0x45, 0x309}}, {0x1EBB, {0x65, 0x309}}, {0x1EBC, {0x45, 0x303}}, {0x1EBD, {0x65, 0x303}}, {0x1EBE, {0x45, 0x302, 0x301}}, {0x1EBF, {0x65, 0x302, 0x301}}, +{0x1EC0, {0x45, 0x302, 0x300}}, {0x1EC1, {0x65, 0x302, 0x300}}, {0x1EC2, {0x45, 0x302, 0x309}}, {0x1EC3, {0x65, 0x302, 0x309}}, {0x1EC4, {0x45, 0x302, 0x303}}, {0x1EC5, {0x65, 0x302, 0x303}}, +{0x1EC6, {0x45, 0x323, 0x302}}, {0x1EC7, {0x65, 0x323, 0x302}}, {0x1EC8, {0x49, 0x309}}, {0x1EC9, {0x69, 0x309}}, {0x1ECA, {0x49, 0x323}}, {0x1ECB, {0x69, 0x323}}, {0x1ECC, {0x4F, 0x323}}, +{0x1ECD, {0x6F, 0x323}}, {0x1ECE, {0x4F, 0x309}}, {0x1ECF, {0x6F, 0x309}}, {0x1ED0, {0x4F, 0x302, 0x301}}, {0x1ED1, {0x6F, 0x302, 0x301}}, {0x1ED2, {0x4F, 0x302, 0x300}}, +{0x1ED3, {0x6F, 0x302, 0x300}}, {0x1ED4, {0x4F, 0x302, 0x309}}, {0x1ED5, {0x6F, 0x302, 0x309}}, {0x1ED6, {0x4F, 0x302, 0x303}}, {0x1ED7, {0x6F, 0x302, 0x303}}, {0x1ED8, {0x4F, 0x323, 0x302}}, +{0x1ED9, {0x6F, 0x323, 0x302}}, {0x1EDA, {0x4F, 0x31B, 0x301}}, {0x1EDB, {0x6F, 0x31B, 0x301}}, {0x1EDC, {0x4F, 0x31B, 0x300}}, {0x1EDD, {0x6F, 0x31B, 0x300}}, {0x1EDE, {0x4F, 0x31B, 0x309}}, +{0x1EDF, {0x6F, 0x31B, 0x309}}, {0x1EE0, {0x4F, 0x31B, 0x303}}, {0x1EE1, {0x6F, 0x31B, 0x303}}, {0x1EE2, {0x4F, 0x31B, 0x323}}, {0x1EE3, {0x6F, 0x31B, 0x323}}, {0x1EE4, {0x55, 0x323}}, +{0x1EE5, {0x75, 0x323}}, {0x1EE6, {0x55, 0x309}}, {0x1EE7, {0x75, 0x309}}, {0x1EE8, {0x55, 0x31B, 0x301}}, {0x1EE9, {0x75, 0x31B, 0x301}}, {0x1EEA, {0x55, 0x31B, 0x300}}, +{0x1EEB, {0x75, 0x31B, 0x300}}, {0x1EEC, {0x55, 0x31B, 0x309}}, {0x1EED, {0x75, 0x31B, 0x309}}, {0x1EEE, {0x55, 0x31B, 0x303}}, {0x1EEF, {0x75, 0x31B, 0x303}}, {0x1EF0, {0x55, 0x31B, 0x323}}, +{0x1EF1, {0x75, 0x31B, 0x323}}, {0x1EF2, {0x59, 0x300}}, {0x1EF3, {0x79, 0x300}}, {0x1EF4, {0x59, 0x323}}, {0x1EF5, {0x79, 0x323}}, {0x1EF6, {0x59, 0x309}}, {0x1EF7, {0x79, 0x309}}, +{0x1EF8, {0x59, 0x303}}, {0x1EF9, {0x79, 0x303}}, {0x1F00, {0x3B1, 0x313}}, {0x1F01, {0x3B1, 0x314}}, {0x1F02, {0x3B1, 0x313, 0x300}}, {0x1F03, {0x3B1, 0x314, 0x300}}, {0x1F04, {0x3B1, 0x313, 0x301}}, +{0x1F05, {0x3B1, 0x314, 0x301}}, {0x1F06, {0x3B1, 0x313, 0x342}}, {0x1F07, {0x3B1, 0x314, 0x342}}, {0x1F08, {0x391, 0x313}}, {0x1F09, {0x391, 0x314}}, {0x1F0A, {0x391, 0x313, 0x300}}, +{0x1F0B, {0x391, 0x314, 0x300}}, {0x1F0C, {0x391, 0x313, 0x301}}, {0x1F0D, {0x391, 0x314, 0x301}}, {0x1F0E, {0x391, 0x313, 0x342}}, {0x1F0F, {0x391, 0x314, 0x342}}, {0x1F10, {0x3B5, 0x313}}, +{0x1F11, {0x3B5, 0x314}}, {0x1F12, {0x3B5, 0x313, 0x300}}, {0x1F13, {0x3B5, 0x314, 0x300}}, {0x1F14, {0x3B5, 0x313, 0x301}}, {0x1F15, {0x3B5, 0x314, 0x301}}, {0x1F18, {0x395, 0x313}}, +{0x1F19, {0x395, 0x314}}, {0x1F1A, {0x395, 0x313, 0x300}}, {0x1F1B, {0x395, 0x314, 0x300}}, {0x1F1C, {0x395, 0x313, 0x301}}, {0x1F1D, {0x395, 0x314, 0x301}}, {0x1F20, {0x3B7, 0x313}}, +{0x1F21, {0x3B7, 0x314}}, {0x1F22, {0x3B7, 0x313, 0x300}}, {0x1F23, {0x3B7, 0x314, 0x300}}, {0x1F24, {0x3B7, 0x313, 0x301}}, {0x1F25, {0x3B7, 0x314, 0x301}}, {0x1F26, {0x3B7, 0x313, 0x342}}, +{0x1F27, {0x3B7, 0x314, 0x342}}, {0x1F28, {0x397, 0x313}}, {0x1F29, {0x397, 0x314}}, {0x1F2A, {0x397, 0x313, 0x300}}, {0x1F2B, {0x397, 0x314, 0x300}}, {0x1F2C, {0x397, 0x313, 0x301}}, +{0x1F2D, {0x397, 0x314, 0x301}}, {0x1F2E, {0x397, 0x313, 0x342}}, {0x1F2F, {0x397, 0x314, 0x342}}, {0x1F30, {0x3B9, 0x313}}, {0x1F31, {0x3B9, 0x314}}, {0x1F32, {0x3B9, 0x313, 0x300}}, +{0x1F33, {0x3B9, 0x314, 0x300}}, {0x1F34, {0x3B9, 0x313, 0x301}}, {0x1F35, {0x3B9, 0x314, 0x301}}, {0x1F36, {0x3B9, 0x313, 0x342}}, {0x1F37, {0x3B9, 0x314, 0x342}}, {0x1F38, {0x399, 0x313}}, +{0x1F39, {0x399, 0x314}}, {0x1F3A, {0x399, 0x313, 0x300}}, {0x1F3B, {0x399, 0x314, 0x300}}, {0x1F3C, {0x399, 0x313, 0x301}}, {0x1F3D, {0x399, 0x314, 0x301}}, {0x1F3E, {0x399, 0x313, 0x342}}, +{0x1F3F, {0x399, 0x314, 0x342}}, {0x1F40, {0x3BF, 0x313}}, {0x1F41, {0x3BF, 0x314}}, {0x1F42, {0x3BF, 0x313, 0x300}}, {0x1F43, {0x3BF, 0x314, 0x300}}, {0x1F44, {0x3BF, 0x313, 0x301}}, +{0x1F45, {0x3BF, 0x314, 0x301}}, {0x1F48, {0x39F, 0x313}}, {0x1F49, {0x39F, 0x314}}, {0x1F4A, {0x39F, 0x313, 0x300}}, {0x1F4B, {0x39F, 0x314, 0x300}}, {0x1F4C, {0x39F, 0x313, 0x301}}, +{0x1F4D, {0x39F, 0x314, 0x301}}, {0x1F50, {0x3C5, 0x313}}, {0x1F51, {0x3C5, 0x314}}, {0x1F52, {0x3C5, 0x313, 0x300}}, {0x1F53, {0x3C5, 0x314, 0x300}}, {0x1F54, {0x3C5, 0x313, 0x301}}, +{0x1F55, {0x3C5, 0x314, 0x301}}, {0x1F56, {0x3C5, 0x313, 0x342}}, {0x1F57, {0x3C5, 0x314, 0x342}}, {0x1F59, {0x3A5, 0x314}}, {0x1F5B, {0x3A5, 0x314, 0x300}}, {0x1F5D, {0x3A5, 0x314, 0x301}}, +{0x1F5F, {0x3A5, 0x314, 0x342}}, {0x1F60, {0x3C9, 0x313}}, {0x1F61, {0x3C9, 0x314}}, {0x1F62, {0x3C9, 0x313, 0x300}}, {0x1F63, {0x3C9, 0x314, 0x300}}, {0x1F64, {0x3C9, 0x313, 0x301}}, +{0x1F65, {0x3C9, 0x314, 0x301}}, {0x1F66, {0x3C9, 0x313, 0x342}}, {0x1F67, {0x3C9, 0x314, 0x342}}, {0x1F68, {0x3A9, 0x313}}, {0x1F69, {0x3A9, 0x314}}, {0x1F6A, {0x3A9, 0x313, 0x300}}, +{0x1F6B, {0x3A9, 0x314, 0x300}}, {0x1F6C, {0x3A9, 0x313, 0x301}}, {0x1F6D, {0x3A9, 0x314, 0x301}}, {0x1F6E, {0x3A9, 0x313, 0x342}}, {0x1F6F, {0x3A9, 0x314, 0x342}}, {0x1F70, {0x3B1, 0x300}}, +{0x1F71, {0x3B1, 0x301}}, {0x1F72, {0x3B5, 0x300}}, {0x1F73, {0x3B5, 0x301}}, {0x1F74, {0x3B7, 0x300}}, {0x1F75, {0x3B7, 0x301}}, {0x1F76, {0x3B9, 0x300}}, {0x1F77, {0x3B9, 0x301}}, +{0x1F78, {0x3BF, 0x300}}, {0x1F79, {0x3BF, 0x301}}, {0x1F7A, {0x3C5, 0x300}}, {0x1F7B, {0x3C5, 0x301}}, {0x1F7C, {0x3C9, 0x300}}, {0x1F7D, {0x3C9, 0x301}}, {0x1F80, {0x3B1, 0x313, 0x345}}, +{0x1F81, {0x3B1, 0x314, 0x345}}, {0x1F82, {0x3B1, 0x313, 0x300, 0x345}}, {0x1F83, {0x3B1, 0x314, 0x300, 0x345}}, {0x1F84, {0x3B1, 0x313, 0x301, 0x345}}, {0x1F85, {0x3B1, 0x314, 0x301, 0x345}}, +{0x1F86, {0x3B1, 0x313, 0x342, 0x345}}, {0x1F87, {0x3B1, 0x314, 0x342, 0x345}}, {0x1F88, {0x391, 0x313, 0x345}}, {0x1F89, {0x391, 0x314, 0x345}}, {0x1F8A, {0x391, 0x313, 0x300, 0x345}}, +{0x1F8B, {0x391, 0x314, 0x300, 0x345}}, {0x1F8C, {0x391, 0x313, 0x301, 0x345}}, {0x1F8D, {0x391, 0x314, 0x301, 0x345}}, {0x1F8E, {0x391, 0x313, 0x342, 0x345}}, {0x1F8F, {0x391, 0x314, 0x342, 0x345}}, +{0x1F90, {0x3B7, 0x313, 0x345}}, {0x1F91, {0x3B7, 0x314, 0x345}}, {0x1F92, {0x3B7, 0x313, 0x300, 0x345}}, {0x1F93, {0x3B7, 0x314, 0x300, 0x345}}, {0x1F94, {0x3B7, 0x313, 0x301, 0x345}}, +{0x1F95, {0x3B7, 0x314, 0x301, 0x345}}, {0x1F96, {0x3B7, 0x313, 0x342, 0x345}}, {0x1F97, {0x3B7, 0x314, 0x342, 0x345}}, {0x1F98, {0x397, 0x313, 0x345}}, {0x1F99, {0x397, 0x314, 0x345}}, +{0x1F9A, {0x397, 0x313, 0x300, 0x345}}, {0x1F9B, {0x397, 0x314, 0x300, 0x345}}, {0x1F9C, {0x397, 0x313, 0x301, 0x345}}, {0x1F9D, {0x397, 0x314, 0x301, 0x345}}, {0x1F9E, {0x397, 0x313, 0x342, 0x345}}, +{0x1F9F, {0x397, 0x314, 0x342, 0x345}}, {0x1FA0, {0x3C9, 0x313, 0x345}}, {0x1FA1, {0x3C9, 0x314, 0x345}}, {0x1FA2, {0x3C9, 0x313, 0x300, 0x345}}, {0x1FA3, {0x3C9, 0x314, 0x300, 0x345}}, +{0x1FA4, {0x3C9, 0x313, 0x301, 0x345}}, {0x1FA5, {0x3C9, 0x314, 0x301, 0x345}}, {0x1FA6, {0x3C9, 0x313, 0x342, 0x345}}, {0x1FA7, {0x3C9, 0x314, 0x342, 0x345}}, {0x1FA8, {0x3A9, 0x313, 0x345}}, +{0x1FA9, {0x3A9, 0x314, 0x345}}, {0x1FAA, {0x3A9, 0x313, 0x300, 0x345}}, {0x1FAB, {0x3A9, 0x314, 0x300, 0x345}}, {0x1FAC, {0x3A9, 0x313, 0x301, 0x345}}, {0x1FAD, {0x3A9, 0x314, 0x301, 0x345}}, +{0x1FAE, {0x3A9, 0x313, 0x342, 0x345}}, {0x1FAF, {0x3A9, 0x314, 0x342, 0x345}}, {0x1FB0, {0x3B1, 0x306}}, {0x1FB1, {0x3B1, 0x304}}, {0x1FB2, {0x3B1, 0x300, 0x345}}, {0x1FB3, {0x3B1, 0x345}}, +{0x1FB4, {0x3B1, 0x301, 0x345}}, {0x1FB6, {0x3B1, 0x342}}, {0x1FB7, {0x3B1, 0x342, 0x345}}, {0x1FB8, {0x391, 0x306}}, {0x1FB9, {0x391, 0x304}}, {0x1FBA, {0x391, 0x300}}, {0x1FBB, {0x391, 0x301}}, +{0x1FBC, {0x391, 0x345}}, {0x1FBE, {0x3B9}}, {0x1FC1, {0xA8, 0x342}}, {0x1FC2, {0x3B7, 0x300, 0x345}}, {0x1FC3, {0x3B7, 0x345}}, {0x1FC4, {0x3B7, 0x301, 0x345}}, {0x1FC6, {0x3B7, 0x342}}, +{0x1FC7, {0x3B7, 0x342, 0x345}}, {0x1FC8, {0x395, 0x300}}, {0x1FC9, {0x395, 0x301}}, {0x1FCA, {0x397, 0x300}}, {0x1FCB, {0x397, 0x301}}, {0x1FCC, {0x397, 0x345}}, {0x1FCD, {0x1FBF, 0x300}}, +{0x1FCE, {0x1FBF, 0x301}}, {0x1FCF, {0x1FBF, 0x342}}, {0x1FD0, {0x3B9, 0x306}}, {0x1FD1, {0x3B9, 0x304}}, {0x1FD2, {0x3B9, 0x308, 0x300}}, {0x1FD3, {0x3B9, 0x308, 0x301}}, {0x1FD6, {0x3B9, 0x342}}, +{0x1FD7, {0x3B9, 0x308, 0x342}}, {0x1FD8, {0x399, 0x306}}, {0x1FD9, {0x399, 0x304}}, {0x1FDA, {0x399, 0x300}}, {0x1FDB, {0x399, 0x301}}, {0x1FDD, {0x1FFE, 0x300}}, {0x1FDE, {0x1FFE, 0x301}}, +{0x1FDF, {0x1FFE, 0x342}}, {0x1FE0, {0x3C5, 0x306}}, {0x1FE1, {0x3C5, 0x304}}, {0x1FE2, {0x3C5, 0x308, 0x300}}, {0x1FE3, {0x3C5, 0x308, 0x301}}, {0x1FE4, {0x3C1, 0x313}}, {0x1FE5, {0x3C1, 0x314}}, +{0x1FE6, {0x3C5, 0x342}}, {0x1FE7, {0x3C5, 0x308, 0x342}}, {0x1FE8, {0x3A5, 0x306}}, {0x1FE9, {0x3A5, 0x304}}, {0x1FEA, {0x3A5, 0x300}}, {0x1FEB, {0x3A5, 0x301}}, {0x1FEC, {0x3A1, 0x314}}, +{0x1FED, {0xA8, 0x300}}, {0x1FEE, {0xA8, 0x301}}, {0x1FEF, {0x60}}, {0x1FF2, {0x3C9, 0x300, 0x345}}, {0x1FF3, {0x3C9, 0x345}}, {0x1FF4, {0x3C9, 0x301, 0x345}}, {0x1FF6, {0x3C9, 0x342}}, +{0x1FF7, {0x3C9, 0x342, 0x345}}, {0x1FF8, {0x39F, 0x300}}, {0x1FF9, {0x39F, 0x301}}, {0x1FFA, {0x3A9, 0x300}}, {0x1FFB, {0x3A9, 0x301}}, {0x1FFC, {0x3A9, 0x345}}, {0x1FFD, {0xB4}}, {0x2000, {0x2002}}, +{0x2001, {0x2003}}, {0x2126, {0x3A9}}, {0x212A, {0x4B}}, {0x212B, {0x41, 0x30A}}, {0x219A, {0x2190, 0x338}}, {0x219B, {0x2192, 0x338}}, {0x21AE, {0x2194, 0x338}}, {0x21CD, {0x21D0, 0x338}}, +{0x21CE, {0x21D4, 0x338}}, {0x21CF, {0x21D2, 0x338}}, {0x2204, {0x2203, 0x338}}, {0x2209, {0x2208, 0x338}}, {0x220C, {0x220B, 0x338}}, {0x2224, {0x2223, 0x338}}, {0x2226, {0x2225, 0x338}}, +{0x2241, {0x223C, 0x338}}, {0x2244, {0x2243, 0x338}}, {0x2247, {0x2245, 0x338}}, {0x2249, {0x2248, 0x338}}, {0x2260, {0x3D, 0x338}}, {0x2262, {0x2261, 0x338}}, {0x226D, {0x224D, 0x338}}, +{0x226E, {0x3C, 0x338}}, {0x226F, {0x3E, 0x338}}, {0x2270, {0x2264, 0x338}}, {0x2271, {0x2265, 0x338}}, {0x2274, {0x2272, 0x338}}, {0x2275, {0x2273, 0x338}}, {0x2278, {0x2276, 0x338}}, +{0x2279, {0x2277, 0x338}}, {0x2280, {0x227A, 0x338}}, {0x2281, {0x227B, 0x338}}, {0x2284, {0x2282, 0x338}}, {0x2285, {0x2283, 0x338}}, {0x2288, {0x2286, 0x338}}, {0x2289, {0x2287, 0x338}}, +{0x22AC, {0x22A2, 0x338}}, {0x22AD, {0x22A8, 0x338}}, {0x22AE, {0x22A9, 0x338}}, {0x22AF, {0x22AB, 0x338}}, {0x22E0, {0x227C, 0x338}}, {0x22E1, {0x227D, 0x338}}, {0x22E2, {0x2291, 0x338}}, +{0x22E3, {0x2292, 0x338}}, {0x22EA, {0x22B2, 0x338}}, {0x22EB, {0x22B3, 0x338}}, {0x22EC, {0x22B4, 0x338}}, {0x22ED, {0x22B5, 0x338}}, {0x2329, {0x3008}}, {0x232A, {0x3009}}, +{0x2ADC, {0x2ADD, 0x338}}, {0x304C, {0x304B, 0x3099}}, {0x304E, {0x304D, 0x3099}}, {0x3050, {0x304F, 0x3099}}, {0x3052, {0x3051, 0x3099}}, {0x3054, {0x3053, 0x3099}}, {0x3056, {0x3055, 0x3099}}, +{0x3058, {0x3057, 0x3099}}, {0x305A, {0x3059, 0x3099}}, {0x305C, {0x305B, 0x3099}}, {0x305E, {0x305D, 0x3099}}, {0x3060, {0x305F, 0x3099}}, {0x3062, {0x3061, 0x3099}}, {0x3065, {0x3064, 0x3099}}, +{0x3067, {0x3066, 0x3099}}, {0x3069, {0x3068, 0x3099}}, {0x3070, {0x306F, 0x3099}}, {0x3071, {0x306F, 0x309A}}, {0x3073, {0x3072, 0x3099}}, {0x3074, {0x3072, 0x309A}}, {0x3076, {0x3075, 0x3099}}, +{0x3077, {0x3075, 0x309A}}, {0x3079, {0x3078, 0x3099}}, {0x307A, {0x3078, 0x309A}}, {0x307C, {0x307B, 0x3099}}, {0x307D, {0x307B, 0x309A}}, {0x3094, {0x3046, 0x3099}}, {0x309E, {0x309D, 0x3099}}, +{0x30AC, {0x30AB, 0x3099}}, {0x30AE, {0x30AD, 0x3099}}, {0x30B0, {0x30AF, 0x3099}}, {0x30B2, {0x30B1, 0x3099}}, {0x30B4, {0x30B3, 0x3099}}, {0x30B6, {0x30B5, 0x3099}}, {0x30B8, {0x30B7, 0x3099}}, +{0x30BA, {0x30B9, 0x3099}}, {0x30BC, {0x30BB, 0x3099}}, {0x30BE, {0x30BD, 0x3099}}, {0x30C0, {0x30BF, 0x3099}}, {0x30C2, {0x30C1, 0x3099}}, {0x30C5, {0x30C4, 0x3099}}, {0x30C7, {0x30C6, 0x3099}}, +{0x30C9, {0x30C8, 0x3099}}, {0x30D0, {0x30CF, 0x3099}}, {0x30D1, {0x30CF, 0x309A}}, {0x30D3, {0x30D2, 0x3099}}, {0x30D4, {0x30D2, 0x309A}}, {0x30D6, {0x30D5, 0x3099}}, {0x30D7, {0x30D5, 0x309A}}, +{0x30D9, {0x30D8, 0x3099}}, {0x30DA, {0x30D8, 0x309A}}, {0x30DC, {0x30DB, 0x3099}}, {0x30DD, {0x30DB, 0x309A}}, {0x30F4, {0x30A6, 0x3099}}, {0x30F7, {0x30EF, 0x3099}}, {0x30F8, {0x30F0, 0x3099}}, +{0x30F9, {0x30F1, 0x3099}}, {0x30FA, {0x30F2, 0x3099}}, {0x30FE, {0x30FD, 0x3099}}, {0xF900, {0x8C48}}, {0xF901, {0x66F4}}, {0xF902, {0x8ECA}}, {0xF903, {0x8CC8}}, {0xF904, {0x6ED1}}, +{0xF905, {0x4E32}}, {0xF906, {0x53E5}}, {0xF907, {0x9F9C}}, {0xF908, {0x9F9C}}, {0xF909, {0x5951}}, {0xF90A, {0x91D1}}, {0xF90B, {0x5587}}, {0xF90C, {0x5948}}, {0xF90D, {0x61F6}}, {0xF90E, {0x7669}}, +{0xF90F, {0x7F85}}, {0xF910, {0x863F}}, {0xF911, {0x87BA}}, {0xF912, {0x88F8}}, {0xF913, {0x908F}}, {0xF914, {0x6A02}}, {0xF915, {0x6D1B}}, {0xF916, {0x70D9}}, {0xF917, {0x73DE}}, {0xF918, {0x843D}}, +{0xF919, {0x916A}}, {0xF91A, {0x99F1}}, {0xF91B, {0x4E82}}, {0xF91C, {0x5375}}, {0xF91D, {0x6B04}}, {0xF91E, {0x721B}}, {0xF91F, {0x862D}}, {0xF920, {0x9E1E}}, {0xF921, {0x5D50}}, {0xF922, {0x6FEB}}, +{0xF923, {0x85CD}}, {0xF924, {0x8964}}, {0xF925, {0x62C9}}, {0xF926, {0x81D8}}, {0xF927, {0x881F}}, {0xF928, {0x5ECA}}, {0xF929, {0x6717}}, {0xF92A, {0x6D6A}}, {0xF92B, {0x72FC}}, {0xF92C, {0x90CE}}, +{0xF92D, {0x4F86}}, {0xF92E, {0x51B7}}, {0xF92F, {0x52DE}}, {0xF930, {0x64C4}}, {0xF931, {0x6AD3}}, {0xF932, {0x7210}}, {0xF933, {0x76E7}}, {0xF934, {0x8001}}, {0xF935, {0x8606}}, {0xF936, {0x865C}}, +{0xF937, {0x8DEF}}, {0xF938, {0x9732}}, {0xF939, {0x9B6F}}, {0xF93A, {0x9DFA}}, {0xF93B, {0x788C}}, {0xF93C, {0x797F}}, {0xF93D, {0x7DA0}}, {0xF93E, {0x83C9}}, {0xF93F, {0x9304}}, {0xF940, {0x9E7F}}, +{0xF941, {0x8AD6}}, {0xF942, {0x58DF}}, {0xF943, {0x5F04}}, {0xF944, {0x7C60}}, {0xF945, {0x807E}}, {0xF946, {0x7262}}, {0xF947, {0x78CA}}, {0xF948, {0x8CC2}}, {0xF949, {0x96F7}}, {0xF94A, {0x58D8}}, +{0xF94B, {0x5C62}}, {0xF94C, {0x6A13}}, {0xF94D, {0x6DDA}}, {0xF94E, {0x6F0F}}, {0xF94F, {0x7D2F}}, {0xF950, {0x7E37}}, {0xF951, {0x964B}}, {0xF952, {0x52D2}}, {0xF953, {0x808B}}, {0xF954, {0x51DC}}, +{0xF955, {0x51CC}}, {0xF956, {0x7A1C}}, {0xF957, {0x7DBE}}, {0xF958, {0x83F1}}, {0xF959, {0x9675}}, {0xF95A, {0x8B80}}, {0xF95B, {0x62CF}}, {0xF95C, {0x6A02}}, {0xF95D, {0x8AFE}}, {0xF95E, {0x4E39}}, +{0xF95F, {0x5BE7}}, {0xF960, {0x6012}}, {0xF961, {0x7387}}, {0xF962, {0x7570}}, {0xF963, {0x5317}}, {0xF964, {0x78FB}}, {0xF965, {0x4FBF}}, {0xF966, {0x5FA9}}, {0xF967, {0x4E0D}}, {0xF968, {0x6CCC}}, +{0xF969, {0x6578}}, {0xF96A, {0x7D22}}, {0xF96B, {0x53C3}}, {0xF96C, {0x585E}}, {0xF96D, {0x7701}}, {0xF96E, {0x8449}}, {0xF96F, {0x8AAA}}, {0xF970, {0x6BBA}}, {0xF971, {0x8FB0}}, {0xF972, {0x6C88}}, +{0xF973, {0x62FE}}, {0xF974, {0x82E5}}, {0xF975, {0x63A0}}, {0xF976, {0x7565}}, {0xF977, {0x4EAE}}, {0xF978, {0x5169}}, {0xF979, {0x51C9}}, {0xF97A, {0x6881}}, {0xF97B, {0x7CE7}}, {0xF97C, {0x826F}}, +{0xF97D, {0x8AD2}}, {0xF97E, {0x91CF}}, {0xF97F, {0x52F5}}, {0xF980, {0x5442}}, {0xF981, {0x5973}}, {0xF982, {0x5EEC}}, {0xF983, {0x65C5}}, {0xF984, {0x6FFE}}, {0xF985, {0x792A}}, {0xF986, {0x95AD}}, +{0xF987, {0x9A6A}}, {0xF988, {0x9E97}}, {0xF989, {0x9ECE}}, {0xF98A, {0x529B}}, {0xF98B, {0x66C6}}, {0xF98C, {0x6B77}}, {0xF98D, {0x8F62}}, {0xF98E, {0x5E74}}, {0xF98F, {0x6190}}, {0xF990, {0x6200}}, +{0xF991, {0x649A}}, {0xF992, {0x6F23}}, {0xF993, {0x7149}}, {0xF994, {0x7489}}, {0xF995, {0x79CA}}, {0xF996, {0x7DF4}}, {0xF997, {0x806F}}, {0xF998, {0x8F26}}, {0xF999, {0x84EE}}, {0xF99A, {0x9023}}, +{0xF99B, {0x934A}}, {0xF99C, {0x5217}}, {0xF99D, {0x52A3}}, {0xF99E, {0x54BD}}, {0xF99F, {0x70C8}}, {0xF9A0, {0x88C2}}, {0xF9A1, {0x8AAA}}, {0xF9A2, {0x5EC9}}, {0xF9A3, {0x5FF5}}, {0xF9A4, {0x637B}}, +{0xF9A5, {0x6BAE}}, {0xF9A6, {0x7C3E}}, {0xF9A7, {0x7375}}, {0xF9A8, {0x4EE4}}, {0xF9A9, {0x56F9}}, {0xF9AA, {0x5BE7}}, {0xF9AB, {0x5DBA}}, {0xF9AC, {0x601C}}, {0xF9AD, {0x73B2}}, {0xF9AE, {0x7469}}, +{0xF9AF, {0x7F9A}}, {0xF9B0, {0x8046}}, {0xF9B1, {0x9234}}, {0xF9B2, {0x96F6}}, {0xF9B3, {0x9748}}, {0xF9B4, {0x9818}}, {0xF9B5, {0x4F8B}}, {0xF9B6, {0x79AE}}, {0xF9B7, {0x91B4}}, {0xF9B8, {0x96B8}}, +{0xF9B9, {0x60E1}}, {0xF9BA, {0x4E86}}, {0xF9BB, {0x50DA}}, {0xF9BC, {0x5BEE}}, {0xF9BD, {0x5C3F}}, {0xF9BE, {0x6599}}, {0xF9BF, {0x6A02}}, {0xF9C0, {0x71CE}}, {0xF9C1, {0x7642}}, {0xF9C2, {0x84FC}}, +{0xF9C3, {0x907C}}, {0xF9C4, {0x9F8D}}, {0xF9C5, {0x6688}}, {0xF9C6, {0x962E}}, {0xF9C7, {0x5289}}, {0xF9C8, {0x677B}}, {0xF9C9, {0x67F3}}, {0xF9CA, {0x6D41}}, {0xF9CB, {0x6E9C}}, {0xF9CC, {0x7409}}, +{0xF9CD, {0x7559}}, {0xF9CE, {0x786B}}, {0xF9CF, {0x7D10}}, {0xF9D0, {0x985E}}, {0xF9D1, {0x516D}}, {0xF9D2, {0x622E}}, {0xF9D3, {0x9678}}, {0xF9D4, {0x502B}}, {0xF9D5, {0x5D19}}, {0xF9D6, {0x6DEA}}, +{0xF9D7, {0x8F2A}}, {0xF9D8, {0x5F8B}}, {0xF9D9, {0x6144}}, {0xF9DA, {0x6817}}, {0xF9DB, {0x7387}}, {0xF9DC, {0x9686}}, {0xF9DD, {0x5229}}, {0xF9DE, {0x540F}}, {0xF9DF, {0x5C65}}, {0xF9E0, {0x6613}}, +{0xF9E1, {0x674E}}, {0xF9E2, {0x68A8}}, {0xF9E3, {0x6CE5}}, {0xF9E4, {0x7406}}, {0xF9E5, {0x75E2}}, {0xF9E6, {0x7F79}}, {0xF9E7, {0x88CF}}, {0xF9E8, {0x88E1}}, {0xF9E9, {0x91CC}}, {0xF9EA, {0x96E2}}, +{0xF9EB, {0x533F}}, {0xF9EC, {0x6EBA}}, {0xF9ED, {0x541D}}, {0xF9EE, {0x71D0}}, {0xF9EF, {0x7498}}, {0xF9F0, {0x85FA}}, {0xF9F1, {0x96A3}}, {0xF9F2, {0x9C57}}, {0xF9F3, {0x9E9F}}, {0xF9F4, {0x6797}}, +{0xF9F5, {0x6DCB}}, {0xF9F6, {0x81E8}}, {0xF9F7, {0x7ACB}}, {0xF9F8, {0x7B20}}, {0xF9F9, {0x7C92}}, {0xF9FA, {0x72C0}}, {0xF9FB, {0x7099}}, {0xF9FC, {0x8B58}}, {0xF9FD, {0x4EC0}}, {0xF9FE, {0x8336}}, +{0xF9FF, {0x523A}}, {0xFA00, {0x5207}}, {0xFA01, {0x5EA6}}, {0xFA02, {0x62D3}}, {0xFA03, {0x7CD6}}, {0xFA04, {0x5B85}}, {0xFA05, {0x6D1E}}, {0xFA06, {0x66B4}}, {0xFA07, {0x8F3B}}, {0xFA08, {0x884C}}, +{0xFA09, {0x964D}}, {0xFA0A, {0x898B}}, {0xFA0B, {0x5ED3}}, {0xFA0C, {0x5140}}, {0xFA0D, {0x55C0}}, {0xFA10, {0x585A}}, {0xFA12, {0x6674}}, {0xFA15, {0x51DE}}, {0xFA16, {0x732A}}, {0xFA17, {0x76CA}}, +{0xFA18, {0x793C}}, {0xFA19, {0x795E}}, {0xFA1A, {0x7965}}, {0xFA1B, {0x798F}}, {0xFA1C, {0x9756}}, {0xFA1D, {0x7CBE}}, {0xFA1E, {0x7FBD}}, {0xFA20, {0x8612}}, {0xFA22, {0x8AF8}}, {0xFA25, {0x9038}}, +{0xFA26, {0x90FD}}, {0xFA2A, {0x98EF}}, {0xFA2B, {0x98FC}}, {0xFA2C, {0x9928}}, {0xFA2D, {0x9DB4}}, {0xFA2E, {0x90DE}}, {0xFA2F, {0x96B7}}, {0xFA30, {0x4FAE}}, {0xFA31, {0x50E7}}, {0xFA32, {0x514D}}, +{0xFA33, {0x52C9}}, {0xFA34, {0x52E4}}, {0xFA35, {0x5351}}, {0xFA36, {0x559D}}, {0xFA37, {0x5606}}, {0xFA38, {0x5668}}, {0xFA39, {0x5840}}, {0xFA3A, {0x58A8}}, {0xFA3B, {0x5C64}}, {0xFA3C, {0x5C6E}}, +{0xFA3D, {0x6094}}, {0xFA3E, {0x6168}}, {0xFA3F, {0x618E}}, {0xFA40, {0x61F2}}, {0xFA41, {0x654F}}, {0xFA42, {0x65E2}}, {0xFA43, {0x6691}}, {0xFA44, {0x6885}}, {0xFA45, {0x6D77}}, {0xFA46, {0x6E1A}}, +{0xFA47, {0x6F22}}, {0xFA48, {0x716E}}, {0xFA49, {0x722B}}, {0xFA4A, {0x7422}}, {0xFA4B, {0x7891}}, {0xFA4C, {0x793E}}, {0xFA4D, {0x7949}}, {0xFA4E, {0x7948}}, {0xFA4F, {0x7950}}, {0xFA50, {0x7956}}, +{0xFA51, {0x795D}}, {0xFA52, {0x798D}}, {0xFA53, {0x798E}}, {0xFA54, {0x7A40}}, {0xFA55, {0x7A81}}, {0xFA56, {0x7BC0}}, {0xFA57, {0x7DF4}}, {0xFA58, {0x7E09}}, {0xFA59, {0x7E41}}, {0xFA5A, {0x7F72}}, +{0xFA5B, {0x8005}}, {0xFA5C, {0x81ED}}, {0xFA5D, {0x8279}}, {0xFA5E, {0x8279}}, {0xFA5F, {0x8457}}, {0xFA60, {0x8910}}, {0xFA61, {0x8996}}, {0xFA62, {0x8B01}}, {0xFA63, {0x8B39}}, {0xFA64, {0x8CD3}}, +{0xFA65, {0x8D08}}, {0xFA66, {0x8FB6}}, {0xFA67, {0x9038}}, {0xFA68, {0x96E3}}, {0xFA69, {0x97FF}}, {0xFA6A, {0x983B}}, {0xFA6B, {0x6075}}, {0xFA6C, {0x242EE}}, {0xFA6D, {0x8218}}, {0xFA70, {0x4E26}}, +{0xFA71, {0x51B5}}, {0xFA72, {0x5168}}, {0xFA73, {0x4F80}}, {0xFA74, {0x5145}}, {0xFA75, {0x5180}}, {0xFA76, {0x52C7}}, {0xFA77, {0x52FA}}, {0xFA78, {0x559D}}, {0xFA79, {0x5555}}, {0xFA7A, {0x5599}}, +{0xFA7B, {0x55E2}}, {0xFA7C, {0x585A}}, {0xFA7D, {0x58B3}}, {0xFA7E, {0x5944}}, {0xFA7F, {0x5954}}, {0xFA80, {0x5A62}}, {0xFA81, {0x5B28}}, {0xFA82, {0x5ED2}}, {0xFA83, {0x5ED9}}, {0xFA84, {0x5F69}}, +{0xFA85, {0x5FAD}}, {0xFA86, {0x60D8}}, {0xFA87, {0x614E}}, {0xFA88, {0x6108}}, {0xFA89, {0x618E}}, {0xFA8A, {0x6160}}, {0xFA8B, {0x61F2}}, {0xFA8C, {0x6234}}, {0xFA8D, {0x63C4}}, {0xFA8E, {0x641C}}, +{0xFA8F, {0x6452}}, {0xFA90, {0x6556}}, {0xFA91, {0x6674}}, {0xFA92, {0x6717}}, {0xFA93, {0x671B}}, {0xFA94, {0x6756}}, {0xFA95, {0x6B79}}, {0xFA96, {0x6BBA}}, {0xFA97, {0x6D41}}, {0xFA98, {0x6EDB}}, +{0xFA99, {0x6ECB}}, {0xFA9A, {0x6F22}}, {0xFA9B, {0x701E}}, {0xFA9C, {0x716E}}, {0xFA9D, {0x77A7}}, {0xFA9E, {0x7235}}, {0xFA9F, {0x72AF}}, {0xFAA0, {0x732A}}, {0xFAA1, {0x7471}}, {0xFAA2, {0x7506}}, +{0xFAA3, {0x753B}}, {0xFAA4, {0x761D}}, {0xFAA5, {0x761F}}, {0xFAA6, {0x76CA}}, {0xFAA7, {0x76DB}}, {0xFAA8, {0x76F4}}, {0xFAA9, {0x774A}}, {0xFAAA, {0x7740}}, {0xFAAB, {0x78CC}}, {0xFAAC, {0x7AB1}}, +{0xFAAD, {0x7BC0}}, {0xFAAE, {0x7C7B}}, {0xFAAF, {0x7D5B}}, {0xFAB0, {0x7DF4}}, {0xFAB1, {0x7F3E}}, {0xFAB2, {0x8005}}, {0xFAB3, {0x8352}}, {0xFAB4, {0x83EF}}, {0xFAB5, {0x8779}}, {0xFAB6, {0x8941}}, +{0xFAB7, {0x8986}}, {0xFAB8, {0x8996}}, {0xFAB9, {0x8ABF}}, {0xFABA, {0x8AF8}}, {0xFABB, {0x8ACB}}, {0xFABC, {0x8B01}}, {0xFABD, {0x8AFE}}, {0xFABE, {0x8AED}}, {0xFABF, {0x8B39}}, {0xFAC0, {0x8B8A}}, +{0xFAC1, {0x8D08}}, {0xFAC2, {0x8F38}}, {0xFAC3, {0x9072}}, {0xFAC4, {0x9199}}, {0xFAC5, {0x9276}}, {0xFAC6, {0x967C}}, {0xFAC7, {0x96E3}}, {0xFAC8, {0x9756}}, {0xFAC9, {0x97DB}}, {0xFACA, {0x97FF}}, +{0xFACB, {0x980B}}, {0xFACC, {0x983B}}, {0xFACD, {0x9B12}}, {0xFACE, {0x9F9C}}, {0xFACF, {0x2284A}}, {0xFAD0, {0x22844}}, {0xFAD1, {0x233D5}}, {0xFAD2, {0x3B9D}}, {0xFAD3, {0x4018}}, +{0xFAD4, {0x4039}}, {0xFAD5, {0x25249}}, {0xFAD6, {0x25CD0}}, {0xFAD7, {0x27ED3}}, {0xFAD8, {0x9F43}}, {0xFAD9, {0x9F8E}}, {0xFB1D, {0x5D9, 0x5B4}}, {0xFB1F, {0x5F2, 0x5B7}}, {0xFB2A, {0x5E9, 0x5C1}}, +{0xFB2B, {0x5E9, 0x5C2}}, {0xFB2C, {0x5E9, 0x5BC, 0x5C1}}, {0xFB2D, {0x5E9, 0x5BC, 0x5C2}}, {0xFB2E, {0x5D0, 0x5B7}}, {0xFB2F, {0x5D0, 0x5B8}}, {0xFB30, {0x5D0, 0x5BC}}, {0xFB31, {0x5D1, 0x5BC}}, +{0xFB32, {0x5D2, 0x5BC}}, {0xFB33, {0x5D3, 0x5BC}}, {0xFB34, {0x5D4, 0x5BC}}, {0xFB35, {0x5D5, 0x5BC}}, {0xFB36, {0x5D6, 0x5BC}}, {0xFB38, {0x5D8, 0x5BC}}, {0xFB39, {0x5D9, 0x5BC}}, +{0xFB3A, {0x5DA, 0x5BC}}, {0xFB3B, {0x5DB, 0x5BC}}, {0xFB3C, {0x5DC, 0x5BC}}, {0xFB3E, {0x5DE, 0x5BC}}, {0xFB40, {0x5E0, 0x5BC}}, {0xFB41, {0x5E1, 0x5BC}}, {0xFB43, {0x5E3, 0x5BC}}, +{0xFB44, {0x5E4, 0x5BC}}, {0xFB46, {0x5E6, 0x5BC}}, {0xFB47, {0x5E7, 0x5BC}}, {0xFB48, {0x5E8, 0x5BC}}, {0xFB49, {0x5E9, 0x5BC}}, {0xFB4A, {0x5EA, 0x5BC}}, {0xFB4B, {0x5D5, 0x5B9}}, +{0xFB4C, {0x5D1, 0x5BF}}, {0xFB4D, {0x5DB, 0x5BF}}, {0xFB4E, {0x5E4, 0x5BF}}, {0x1109A, {0x11099, 0x110BA}}, {0x1109C, {0x1109B, 0x110BA}}, {0x110AB, {0x110A5, 0x110BA}}, +{0x1112E, {0x11131, 0x11127}}, {0x1112F, {0x11132, 0x11127}}, {0x1134B, {0x11347, 0x1133E}}, {0x1134C, {0x11347, 0x11357}}, {0x114BB, {0x114B9, 0x114BA}}, {0x114BC, {0x114B9, 0x114B0}}, +{0x114BE, {0x114B9, 0x114BD}}, {0x115BA, {0x115B8, 0x115AF}}, {0x115BB, {0x115B9, 0x115AF}}, {0x1D15E, {0x1D157, 0x1D165}}, {0x1D15F, {0x1D158, 0x1D165}}, {0x1D160, {0x1D158, 0x1D165, 0x1D16E}}, +{0x1D161, {0x1D158, 0x1D165, 0x1D16F}}, {0x1D162, {0x1D158, 0x1D165, 0x1D170}}, {0x1D163, {0x1D158, 0x1D165, 0x1D171}}, {0x1D164, {0x1D158, 0x1D165, 0x1D172}}, {0x1D1BB, {0x1D1B9, 0x1D165}}, +{0x1D1BC, {0x1D1BA, 0x1D165}}, {0x1D1BD, {0x1D1B9, 0x1D165, 0x1D16E}}, {0x1D1BE, {0x1D1BA, 0x1D165, 0x1D16E}}, {0x1D1BF, {0x1D1B9, 0x1D165, 0x1D16F}}, {0x1D1C0, {0x1D1BA, 0x1D165, 0x1D16F}}, +{0x2F800, {0x4E3D}}, {0x2F801, {0x4E38}}, {0x2F802, {0x4E41}}, {0x2F803, {0x20122}}, {0x2F804, {0x4F60}}, {0x2F805, {0x4FAE}}, {0x2F806, {0x4FBB}}, {0x2F807, {0x5002}}, {0x2F808, {0x507A}}, +{0x2F809, {0x5099}}, {0x2F80A, {0x50E7}}, {0x2F80B, {0x50CF}}, {0x2F80C, {0x349E}}, {0x2F80D, {0x2063A}}, {0x2F80E, {0x514D}}, {0x2F80F, {0x5154}}, {0x2F810, {0x5164}}, {0x2F811, {0x5177}}, +{0x2F812, {0x2051C}}, {0x2F813, {0x34B9}}, {0x2F814, {0x5167}}, {0x2F815, {0x518D}}, {0x2F816, {0x2054B}}, {0x2F817, {0x5197}}, {0x2F818, {0x51A4}}, {0x2F819, {0x4ECC}}, {0x2F81A, {0x51AC}}, +{0x2F81B, {0x51B5}}, {0x2F81C, {0x291DF}}, {0x2F81D, {0x51F5}}, {0x2F81E, {0x5203}}, {0x2F81F, {0x34DF}}, {0x2F820, {0x523B}}, {0x2F821, {0x5246}}, {0x2F822, {0x5272}}, {0x2F823, {0x5277}}, +{0x2F824, {0x3515}}, {0x2F825, {0x52C7}}, {0x2F826, {0x52C9}}, {0x2F827, {0x52E4}}, {0x2F828, {0x52FA}}, {0x2F829, {0x5305}}, {0x2F82A, {0x5306}}, {0x2F82B, {0x5317}}, {0x2F82C, {0x5349}}, +{0x2F82D, {0x5351}}, {0x2F82E, {0x535A}}, {0x2F82F, {0x5373}}, {0x2F830, {0x537D}}, {0x2F831, {0x537F}}, {0x2F832, {0x537F}}, {0x2F833, {0x537F}}, {0x2F834, {0x20A2C}}, {0x2F835, {0x7070}}, +{0x2F836, {0x53CA}}, {0x2F837, {0x53DF}}, {0x2F838, {0x20B63}}, {0x2F839, {0x53EB}}, {0x2F83A, {0x53F1}}, {0x2F83B, {0x5406}}, {0x2F83C, {0x549E}}, {0x2F83D, {0x5438}}, {0x2F83E, {0x5448}}, +{0x2F83F, {0x5468}}, {0x2F840, {0x54A2}}, {0x2F841, {0x54F6}}, {0x2F842, {0x5510}}, {0x2F843, {0x5553}}, {0x2F844, {0x5563}}, {0x2F845, {0x5584}}, {0x2F846, {0x5584}}, {0x2F847, {0x5599}}, +{0x2F848, {0x55AB}}, {0x2F849, {0x55B3}}, {0x2F84A, {0x55C2}}, {0x2F84B, {0x5716}}, {0x2F84C, {0x5606}}, {0x2F84D, {0x5717}}, {0x2F84E, {0x5651}}, {0x2F84F, {0x5674}}, {0x2F850, {0x5207}}, +{0x2F851, {0x58EE}}, {0x2F852, {0x57CE}}, {0x2F853, {0x57F4}}, {0x2F854, {0x580D}}, {0x2F855, {0x578B}}, {0x2F856, {0x5832}}, {0x2F857, {0x5831}}, {0x2F858, {0x58AC}}, {0x2F859, {0x214E4}}, +{0x2F85A, {0x58F2}}, {0x2F85B, {0x58F7}}, {0x2F85C, {0x5906}}, {0x2F85D, {0x591A}}, {0x2F85E, {0x5922}}, {0x2F85F, {0x5962}}, {0x2F860, {0x216A8}}, {0x2F861, {0x216EA}}, {0x2F862, {0x59EC}}, +{0x2F863, {0x5A1B}}, {0x2F864, {0x5A27}}, {0x2F865, {0x59D8}}, {0x2F866, {0x5A66}}, {0x2F867, {0x36EE}}, {0x2F868, {0x36FC}}, {0x2F869, {0x5B08}}, {0x2F86A, {0x5B3E}}, {0x2F86B, {0x5B3E}}, +{0x2F86C, {0x219C8}}, {0x2F86D, {0x5BC3}}, {0x2F86E, {0x5BD8}}, {0x2F86F, {0x5BE7}}, {0x2F870, {0x5BF3}}, {0x2F871, {0x21B18}}, {0x2F872, {0x5BFF}}, {0x2F873, {0x5C06}}, {0x2F874, {0x5F53}}, +{0x2F875, {0x5C22}}, {0x2F876, {0x3781}}, {0x2F877, {0x5C60}}, {0x2F878, {0x5C6E}}, {0x2F879, {0x5CC0}}, {0x2F87A, {0x5C8D}}, {0x2F87B, {0x21DE4}}, {0x2F87C, {0x5D43}}, {0x2F87D, {0x21DE6}}, +{0x2F87E, {0x5D6E}}, {0x2F87F, {0x5D6B}}, {0x2F880, {0x5D7C}}, {0x2F881, {0x5DE1}}, {0x2F882, {0x5DE2}}, {0x2F883, {0x382F}}, {0x2F884, {0x5DFD}}, {0x2F885, {0x5E28}}, {0x2F886, {0x5E3D}}, +{0x2F887, {0x5E69}}, {0x2F888, {0x3862}}, {0x2F889, {0x22183}}, {0x2F88A, {0x387C}}, {0x2F88B, {0x5EB0}}, {0x2F88C, {0x5EB3}}, {0x2F88D, {0x5EB6}}, {0x2F88E, {0x5ECA}}, {0x2F88F, {0x2A392}}, +{0x2F890, {0x5EFE}}, {0x2F891, {0x22331}}, {0x2F892, {0x22331}}, {0x2F893, {0x8201}}, {0x2F894, {0x5F22}}, {0x2F895, {0x5F22}}, {0x2F896, {0x38C7}}, {0x2F897, {0x232B8}}, {0x2F898, {0x261DA}}, +{0x2F899, {0x5F62}}, {0x2F89A, {0x5F6B}}, {0x2F89B, {0x38E3}}, {0x2F89C, {0x5F9A}}, {0x2F89D, {0x5FCD}}, {0x2F89E, {0x5FD7}}, {0x2F89F, {0x5FF9}}, {0x2F8A0, {0x6081}}, {0x2F8A1, {0x393A}}, +{0x2F8A2, {0x391C}}, {0x2F8A3, {0x6094}}, {0x2F8A4, {0x226D4}}, {0x2F8A5, {0x60C7}}, {0x2F8A6, {0x6148}}, {0x2F8A7, {0x614C}}, {0x2F8A8, {0x614E}}, {0x2F8A9, {0x614C}}, {0x2F8AA, {0x617A}}, +{0x2F8AB, {0x618E}}, {0x2F8AC, {0x61B2}}, {0x2F8AD, {0x61A4}}, {0x2F8AE, {0x61AF}}, {0x2F8AF, {0x61DE}}, {0x2F8B0, {0x61F2}}, {0x2F8B1, {0x61F6}}, {0x2F8B2, {0x6210}}, {0x2F8B3, {0x621B}}, +{0x2F8B4, {0x625D}}, {0x2F8B5, {0x62B1}}, {0x2F8B6, {0x62D4}}, {0x2F8B7, {0x6350}}, {0x2F8B8, {0x22B0C}}, {0x2F8B9, {0x633D}}, {0x2F8BA, {0x62FC}}, {0x2F8BB, {0x6368}}, {0x2F8BC, {0x6383}}, +{0x2F8BD, {0x63E4}}, {0x2F8BE, {0x22BF1}}, {0x2F8BF, {0x6422}}, {0x2F8C0, {0x63C5}}, {0x2F8C1, {0x63A9}}, {0x2F8C2, {0x3A2E}}, {0x2F8C3, {0x6469}}, {0x2F8C4, {0x647E}}, {0x2F8C5, {0x649D}}, +{0x2F8C6, {0x6477}}, {0x2F8C7, {0x3A6C}}, {0x2F8C8, {0x654F}}, {0x2F8C9, {0x656C}}, {0x2F8CA, {0x2300A}}, {0x2F8CB, {0x65E3}}, {0x2F8CC, {0x66F8}}, {0x2F8CD, {0x6649}}, {0x2F8CE, {0x3B19}}, +{0x2F8CF, {0x6691}}, {0x2F8D0, {0x3B08}}, {0x2F8D1, {0x3AE4}}, {0x2F8D2, {0x5192}}, {0x2F8D3, {0x5195}}, {0x2F8D4, {0x6700}}, {0x2F8D5, {0x669C}}, {0x2F8D6, {0x80AD}}, {0x2F8D7, {0x43D9}}, +{0x2F8D8, {0x6717}}, {0x2F8D9, {0x671B}}, {0x2F8DA, {0x6721}}, {0x2F8DB, {0x675E}}, {0x2F8DC, {0x6753}}, {0x2F8DD, {0x233C3}}, {0x2F8DE, {0x3B49}}, {0x2F8DF, {0x67FA}}, {0x2F8E0, {0x6785}}, +{0x2F8E1, {0x6852}}, {0x2F8E2, {0x6885}}, {0x2F8E3, {0x2346D}}, {0x2F8E4, {0x688E}}, {0x2F8E5, {0x681F}}, {0x2F8E6, {0x6914}}, {0x2F8E7, {0x3B9D}}, {0x2F8E8, {0x6942}}, {0x2F8E9, {0x69A3}}, +{0x2F8EA, {0x69EA}}, {0x2F8EB, {0x6AA8}}, {0x2F8EC, {0x236A3}}, {0x2F8ED, {0x6ADB}}, {0x2F8EE, {0x3C18}}, {0x2F8EF, {0x6B21}}, {0x2F8F0, {0x238A7}}, {0x2F8F1, {0x6B54}}, {0x2F8F2, {0x3C4E}}, +{0x2F8F3, {0x6B72}}, {0x2F8F4, {0x6B9F}}, {0x2F8F5, {0x6BBA}}, {0x2F8F6, {0x6BBB}}, {0x2F8F7, {0x23A8D}}, {0x2F8F8, {0x21D0B}}, {0x2F8F9, {0x23AFA}}, {0x2F8FA, {0x6C4E}}, {0x2F8FB, {0x23CBC}}, +{0x2F8FC, {0x6CBF}}, {0x2F8FD, {0x6CCD}}, {0x2F8FE, {0x6C67}}, {0x2F8FF, {0x6D16}}, {0x2F900, {0x6D3E}}, {0x2F901, {0x6D77}}, {0x2F902, {0x6D41}}, {0x2F903, {0x6D69}}, {0x2F904, {0x6D78}}, +{0x2F905, {0x6D85}}, {0x2F906, {0x23D1E}}, {0x2F907, {0x6D34}}, {0x2F908, {0x6E2F}}, {0x2F909, {0x6E6E}}, {0x2F90A, {0x3D33}}, {0x2F90B, {0x6ECB}}, {0x2F90C, {0x6EC7}}, {0x2F90D, {0x23ED1}}, +{0x2F90E, {0x6DF9}}, {0x2F90F, {0x6F6E}}, {0x2F910, {0x23F5E}}, {0x2F911, {0x23F8E}}, {0x2F912, {0x6FC6}}, {0x2F913, {0x7039}}, {0x2F914, {0x701E}}, {0x2F915, {0x701B}}, {0x2F916, {0x3D96}}, +{0x2F917, {0x704A}}, {0x2F918, {0x707D}}, {0x2F919, {0x7077}}, {0x2F91A, {0x70AD}}, {0x2F91B, {0x20525}}, {0x2F91C, {0x7145}}, {0x2F91D, {0x24263}}, {0x2F91E, {0x719C}}, {0x2F91F, {0x243AB}}, +{0x2F920, {0x7228}}, {0x2F921, {0x7235}}, {0x2F922, {0x7250}}, {0x2F923, {0x24608}}, {0x2F924, {0x7280}}, {0x2F925, {0x7295}}, {0x2F926, {0x24735}}, {0x2F927, {0x24814}}, {0x2F928, {0x737A}}, +{0x2F929, {0x738B}}, {0x2F92A, {0x3EAC}}, {0x2F92B, {0x73A5}}, {0x2F92C, {0x3EB8}}, {0x2F92D, {0x3EB8}}, {0x2F92E, {0x7447}}, {0x2F92F, {0x745C}}, {0x2F930, {0x7471}}, {0x2F931, {0x7485}}, +{0x2F932, {0x74CA}}, {0x2F933, {0x3F1B}}, {0x2F934, {0x7524}}, {0x2F935, {0x24C36}}, {0x2F936, {0x753E}}, {0x2F937, {0x24C92}}, {0x2F938, {0x7570}}, {0x2F939, {0x2219F}}, {0x2F93A, {0x7610}}, +{0x2F93B, {0x24FA1}}, {0x2F93C, {0x24FB8}}, {0x2F93D, {0x25044}}, {0x2F93E, {0x3FFC}}, {0x2F93F, {0x4008}}, {0x2F940, {0x76F4}}, {0x2F941, {0x250F3}}, {0x2F942, {0x250F2}}, {0x2F943, {0x25119}}, +{0x2F944, {0x25133}}, {0x2F945, {0x771E}}, {0x2F946, {0x771F}}, {0x2F947, {0x771F}}, {0x2F948, {0x774A}}, {0x2F949, {0x4039}}, {0x2F94A, {0x778B}}, {0x2F94B, {0x4046}}, {0x2F94C, {0x4096}}, +{0x2F94D, {0x2541D}}, {0x2F94E, {0x784E}}, {0x2F94F, {0x788C}}, {0x2F950, {0x78CC}}, {0x2F951, {0x40E3}}, {0x2F952, {0x25626}}, {0x2F953, {0x7956}}, {0x2F954, {0x2569A}}, {0x2F955, {0x256C5}}, +{0x2F956, {0x798F}}, {0x2F957, {0x79EB}}, {0x2F958, {0x412F}}, {0x2F959, {0x7A40}}, {0x2F95A, {0x7A4A}}, {0x2F95B, {0x7A4F}}, {0x2F95C, {0x2597C}}, {0x2F95D, {0x25AA7}}, {0x2F95E, {0x25AA7}}, +{0x2F95F, {0x7AEE}}, {0x2F960, {0x4202}}, {0x2F961, {0x25BAB}}, {0x2F962, {0x7BC6}}, {0x2F963, {0x7BC9}}, {0x2F964, {0x4227}}, {0x2F965, {0x25C80}}, {0x2F966, {0x7CD2}}, {0x2F967, {0x42A0}}, +{0x2F968, {0x7CE8}}, {0x2F969, {0x7CE3}}, {0x2F96A, {0x7D00}}, {0x2F96B, {0x25F86}}, {0x2F96C, {0x7D63}}, {0x2F96D, {0x4301}}, {0x2F96E, {0x7DC7}}, {0x2F96F, {0x7E02}}, {0x2F970, {0x7E45}}, +{0x2F971, {0x4334}}, {0x2F972, {0x26228}}, {0x2F973, {0x26247}}, {0x2F974, {0x4359}}, {0x2F975, {0x262D9}}, {0x2F976, {0x7F7A}}, {0x2F977, {0x2633E}}, {0x2F978, {0x7F95}}, {0x2F979, {0x7FFA}}, +{0x2F97A, {0x8005}}, {0x2F97B, {0x264DA}}, {0x2F97C, {0x26523}}, {0x2F97D, {0x8060}}, {0x2F97E, {0x265A8}}, {0x2F97F, {0x8070}}, {0x2F980, {0x2335F}}, {0x2F981, {0x43D5}}, {0x2F982, {0x80B2}}, +{0x2F983, {0x8103}}, {0x2F984, {0x440B}}, {0x2F985, {0x813E}}, {0x2F986, {0x5AB5}}, {0x2F987, {0x267A7}}, {0x2F988, {0x267B5}}, {0x2F989, {0x23393}}, {0x2F98A, {0x2339C}}, {0x2F98B, {0x8201}}, +{0x2F98C, {0x8204}}, {0x2F98D, {0x8F9E}}, {0x2F98E, {0x446B}}, {0x2F98F, {0x8291}}, {0x2F990, {0x828B}}, {0x2F991, {0x829D}}, {0x2F992, {0x52B3}}, {0x2F993, {0x82B1}}, {0x2F994, {0x82B3}}, +{0x2F995, {0x82BD}}, {0x2F996, {0x82E6}}, {0x2F997, {0x26B3C}}, {0x2F998, {0x82E5}}, {0x2F999, {0x831D}}, {0x2F99A, {0x8363}}, {0x2F99B, {0x83AD}}, {0x2F99C, {0x8323}}, {0x2F99D, {0x83BD}}, +{0x2F99E, {0x83E7}}, {0x2F99F, {0x8457}}, {0x2F9A0, {0x8353}}, {0x2F9A1, {0x83CA}}, {0x2F9A2, {0x83CC}}, {0x2F9A3, {0x83DC}}, {0x2F9A4, {0x26C36}}, {0x2F9A5, {0x26D6B}}, {0x2F9A6, {0x26CD5}}, +{0x2F9A7, {0x452B}}, {0x2F9A8, {0x84F1}}, {0x2F9A9, {0x84F3}}, {0x2F9AA, {0x8516}}, {0x2F9AB, {0x273CA}}, {0x2F9AC, {0x8564}}, {0x2F9AD, {0x26F2C}}, {0x2F9AE, {0x455D}}, {0x2F9AF, {0x4561}}, +{0x2F9B0, {0x26FB1}}, {0x2F9B1, {0x270D2}}, {0x2F9B2, {0x456B}}, {0x2F9B3, {0x8650}}, {0x2F9B4, {0x865C}}, {0x2F9B5, {0x8667}}, {0x2F9B6, {0x8669}}, {0x2F9B7, {0x86A9}}, {0x2F9B8, {0x8688}}, +{0x2F9B9, {0x870E}}, {0x2F9BA, {0x86E2}}, {0x2F9BB, {0x8779}}, {0x2F9BC, {0x8728}}, {0x2F9BD, {0x876B}}, {0x2F9BE, {0x8786}}, {0x2F9BF, {0x45D7}}, {0x2F9C0, {0x87E1}}, {0x2F9C1, {0x8801}}, +{0x2F9C2, {0x45F9}}, {0x2F9C3, {0x8860}}, {0x2F9C4, {0x8863}}, {0x2F9C5, {0x27667}}, {0x2F9C6, {0x88D7}}, {0x2F9C7, {0x88DE}}, {0x2F9C8, {0x4635}}, {0x2F9C9, {0x88FA}}, {0x2F9CA, {0x34BB}}, +{0x2F9CB, {0x278AE}}, {0x2F9CC, {0x27966}}, {0x2F9CD, {0x46BE}}, {0x2F9CE, {0x46C7}}, {0x2F9CF, {0x8AA0}}, {0x2F9D0, {0x8AED}}, {0x2F9D1, {0x8B8A}}, {0x2F9D2, {0x8C55}}, {0x2F9D3, {0x27CA8}}, +{0x2F9D4, {0x8CAB}}, {0x2F9D5, {0x8CC1}}, {0x2F9D6, {0x8D1B}}, {0x2F9D7, {0x8D77}}, {0x2F9D8, {0x27F2F}}, {0x2F9D9, {0x20804}}, {0x2F9DA, {0x8DCB}}, {0x2F9DB, {0x8DBC}}, {0x2F9DC, {0x8DF0}}, +{0x2F9DD, {0x208DE}}, {0x2F9DE, {0x8ED4}}, {0x2F9DF, {0x8F38}}, {0x2F9E0, {0x285D2}}, {0x2F9E1, {0x285ED}}, {0x2F9E2, {0x9094}}, {0x2F9E3, {0x90F1}}, {0x2F9E4, {0x9111}}, {0x2F9E5, {0x2872E}}, +{0x2F9E6, {0x911B}}, {0x2F9E7, {0x9238}}, {0x2F9E8, {0x92D7}}, {0x2F9E9, {0x92D8}}, {0x2F9EA, {0x927C}}, {0x2F9EB, {0x93F9}}, {0x2F9EC, {0x9415}}, {0x2F9ED, {0x28BFA}}, {0x2F9EE, {0x958B}}, +{0x2F9EF, {0x4995}}, {0x2F9F0, {0x95B7}}, {0x2F9F1, {0x28D77}}, {0x2F9F2, {0x49E6}}, {0x2F9F3, {0x96C3}}, {0x2F9F4, {0x5DB2}}, {0x2F9F5, {0x9723}}, {0x2F9F6, {0x29145}}, {0x2F9F7, {0x2921A}}, +{0x2F9F8, {0x4A6E}}, {0x2F9F9, {0x4A76}}, {0x2F9FA, {0x97E0}}, {0x2F9FB, {0x2940A}}, {0x2F9FC, {0x4AB2}}, {0x2F9FD, {0x29496}}, {0x2F9FE, {0x980B}}, {0x2F9FF, {0x980B}}, {0x2FA00, {0x9829}}, +{0x2FA01, {0x295B6}}, {0x2FA02, {0x98E2}}, {0x2FA03, {0x4B33}}, {0x2FA04, {0x9929}}, {0x2FA05, {0x99A7}}, {0x2FA06, {0x99C2}}, {0x2FA07, {0x99FE}}, {0x2FA08, {0x4BCE}}, {0x2FA09, {0x29B30}}, +{0x2FA0A, {0x9B12}}, {0x2FA0B, {0x9C40}}, {0x2FA0C, {0x9CFD}}, {0x2FA0D, {0x4CCE}}, {0x2FA0E, {0x4CED}}, {0x2FA0F, {0x9D67}}, {0x2FA10, {0x2A0CE}}, {0x2FA11, {0x4CF8}}, {0x2FA12, {0x2A105}}, +{0x2FA13, {0x2A20E}}, {0x2FA14, {0x2A291}}, {0x2FA15, {0x9EBB}}, {0x2FA16, {0x4D56}}, {0x2FA17, {0x9EF9}}, {0x2FA18, {0x9EFE}}, {0x2FA19, {0x9F05}}, {0x2FA1A, {0x9F0F}}, {0x2FA1B, {0x9F16}}, +{0x2FA1D, {0x2A600}}, +}; + static std::string codepoint_to_utf8(uint32_t cp) { std::string result; if (/* 0x00 <= cp && */ cp <= 0x7f) { @@ -404,7 +666,8 @@ static std::unordered_map codepoint_type_map() { static int codepoint_type(uint32_t cp) { static std::unordered_map codepoint_types = codepoint_type_map(); - return codepoint_types.find(cp) == codepoint_types.end() ? CODEPOINT_TYPE_UNIDENTIFIED : codepoint_types.at(cp); + const auto it = codepoint_types.find(cp); + return it == codepoint_types.end() ? CODEPOINT_TYPE_UNIDENTIFIED : it->second; } static int codepoint_type(const std::string & utf8) {